Resolution Number: AC/II(22-23).3.RUS1

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for:

Program: Integrated M.Sc. in Bioanalytical Sciences

(T.Y. B.Sc. Sem V Syllabus)

Program Code: RUSBAS

(Credit Based Semester and Grading System for

the academic year 2023-24)

GRADUATE ATTRIBUTES

GA	GA Description	
	A student completing Bachelor's Degree in Science program	
	will be able to:	
GA 1	Recall and explain acquired scientific knowledge in a	
	comprehensive manner and apply the skills acquired in their	
	chosen discipline. Interpret scientific ideas and relate its	
	interconnectedness to various fields in science.	
GA 2	Evaluate scientific ideas critically, analyse problems, explore	
	options for practical demonstrations, illustrate work plans and	
	execute them, organise data and draw inferences.	
GA 3	Explore and evaluate digital information and use it for knowledge	
	upgradation. Apply relevant information so gathered for analysis	
	and communication using appropriate digital tools.	
GA 4	Ask relevant questions, understand scientific relevance,	
	hypothesize a scientific problem, construct and execute a project	
	plan and analyse results.	
GA 5	Take complex challenges, work responsibly and independently, as	
C	well as in cohesion with a team for completion of a task.	
2	Communicate effectively, convincingly and in an articulate manner.	
GA 6	Apply scientific information with sensitivity to values of different	
0.0,	cultural groups. Disseminate scientific knowledge effectively for	
	upliftment of the society.	
GA 7	Follow ethical practices at work place and be unbiased and critical	
	in interpretation of scientific data. Understand the environmental	
	issues and explore sustainable solutions for it.	
GA 8	Keep abreast with current scientific developments in the specific	
	discipline and adapt to technological advancements for better	
	application of scientific knowledge as a lifelong learner.	

РО	Description
	A student completing Bachelor's Degree in Science program in the subject of Bioanalytical Sciences will be able to:
PO 1	This course will impart high quality science education in a vibrant academic ambience with the faculty of distinguished teachers and scientists.
PO 2	It will also equip students for the future who will take up the challenge of doing quality research & teaching and also contribute to industrial production and R & D in the fields of Bioanalysis, Bioinformatics and Nutraceutical Sciences.
PO 3	It will amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis to better characterize the products useful as medicines as well as nutraceuticals.

PROGRAM OUTCOMES

202 INGI.

Course Code: RUSBAS501 Course Title: Entrepreneurship Skills Academic Year 2023-24 llege

T.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Encouraged to start their own enterprise after getting the insights from
	the course.
CO2	Prepare for the required skill set of an entrepreneur and also realize
	the challenges in this area.

Paper Code Semester V		Lectures	
F	RUSBAS501 ENTREPRENEURSHIP SKILLS		40
50	1.1 The Entr	epreneur	10
1.	Entrepreneu	ial motivation – dynamics of motivation.	
2.	Developing E	ntrepreneurial competencies - requirements and understanding	
	the process o	f entrepreneurship development, self-awareness, interpersonal	
	skills, creativ	ity, assertiveness, achievement, factors affecting entrepreneur's	
	role.		
3.	Case study of	Successful Entrepreneurs from India.	
50	1.2 Concept	ual Frame Work	10
1.	Concept, need	l and process in entrepreneurship development.	
2.	Change in the	Global Business Environment in post Reform Time, LPG Reforms	
	in India.		
3.	Types of ente	rprise – Merits and Demerits	
4.	Government	policies and schemes for enterprise development	
5.	Mudra Yojana	a, Start Up India.	
50	1.3 Business	Economics	10
1.	Demand anal	ysis, concept & types of demand, law of demand	
2.	Introduction	to Cost & Revenue, its types	
3.	Cost Classific	ation (Various types of Cost Concepts)	
4.	STP (segment	tation / targeting / positioning)	
5.	P's of Market	ing	
6.	WTO: Functio	ons and Agreements with Reference to TRIPS, TRIMS and GATS.	
7.	IPRs and Indi	an Start Ups, case study approach	

501.4 Knowledge Management	10
1. Introduction	
2. History and Evolution	
3. Pillars of Knowledge Management	
4. Scope & Significance Technology & Knowledge Management.	
5. Critical Success Factors of KM	
6. Case Studies	
RUSBASP501 PRACTICALS	
1. Case Study/Assignment/Project Report/Industrial Visit	
2. Work management tools Google sheets	
3. Preparing Project plan/ Project management	

Entrepreneurship Skills	 Eric Ries: The Lean Startup Kimiz Dalkir: Knowledge Management in theory and Practice
	Jugaad Innovation: Radjou, Prabhu, Ahuja
	Silver
٩	le l
à	<i>S</i>
$\mathcal{A}_{\mathcal{O}}$	
09/1	

Course Code: RUSBAS502

Course Title: Biological Sciences V

Academic Year 2023-24

T.Y.B.Sc.

016.0

COURSE OUTCOME	DESCRIPTION	
OUTCOME		
CO 1	Understand and design basic cloning experiments to obtain genetically modified organisms. They should be sensitized regarding ethical guidelines of cloning.	
CO2	To identify the importance of phytochemicals as possible drug candidates and learn the techniques to extract phytochemicals from plants	

Paper Code	Semester V	Lectures
RUSBAS502	Biological Sciences V	45
502.1: Recomb	vinant DNA Technology	15
Restriction Enzy Plants and Anim	ression vectors (Plasmids, Phages, Cosmids, YACs, BACs, etc.), mes, process of generating recombinant DNA, Transgenic Bacteria, als: Commercial applications with suitable examples (Any Two), ransposonsas genetic tools, Cloning- current Status, Regulations,	
metabolites, Fun Terpenoids, Alka	nemistry ondary metabolites from plants, Classification of Plant Secondary ctions of Plant Secondary Metabolites, Chemistry of Phenolics, lloids, Key factors affecting synthesis of secondary metabolites, as Drugs, Commercial applications	15
502.3: Extracti Extraction of pl modern methods Steam Distillatio	on Technologies for Phytochemicals hytoconstituents, Choice of solvent for extraction, classical and s of extraction, Percolation & Maceration, Soxhlet extraction, n & Rotary vacuum evaporator, Liquid- Liquid & Solid Phase sonication, Microwave Assisted Extraction, Supercritical Fluid	15
RUSBASP502	PRACTICALS	

- 1. Extraction of phytoconstituents by maceration, percolation, steam distillation and using Soxhlet extractor
- 2. Qualitative tests for Phytoconstituents
- 3. Study of antimicrobial activity of phytoconstituents
- 4. Extraction of Genomic DNA from suitable plant or microbial material
- 5. Microscopic evaluation of plants
- 6. Problems on Restriction enzyme digestion

Molecular Biotechnology: Glick
 Biotechnology and Genetic Engineering: Kathy Wilson
Gene Cloning : T.A.Brown
• Text book of Pharmacognosy: G.E.Trease, W.C. Evans
Herbal Drug Technology: Agrawal, Paridhavi
Rillahutononous

Course Code: RUSBAS503

Course Title: Chemical Sciences V

Academic Year 2023-24

T.Y.B.Sc.

0/1820

COURSE OUTCOME	DESCRIPTION
CO 1	To get acquainted with the basic concepts of atomic and molecular spectroscopy and their applications in bioanalysis also to choose the correct method for analysis based on chemical property of analyte and objective of analysis.
C02	Introduction to concepts of Raman Spectroscopy and applications of the same.

Paper Co	de Semester V I	Lectures
RUSBAS5	03 Chemical Sciences V	45
503.1 A	comic Spectroscopy	15
1. Atomic	Absorption Spectroscopy	
a.	Principles & Instrumentation	
b.	Applications	
	Emission Spectroscopy	
a.	Principles & Instrumentation (Atomic Emission Spectrophotometer,	
	Flame Photometer & Inductively Coupled Plasma- Atomic Emission	
	Spectroscopy, Optical Emission Spectroscopy), Applications	
3. Quant	tative applications of atomic absorption and flame photometry,	
calibra	tion curve method, standard addition and internal standard	
metho	d	
503.2 M	olecular Spectroscopy	15
Molecula	r Fluorescence and Phosphorescence Spectroscopy:	
Theory, in	strumentation and applications, Dipole moment: Dipole moment,	
polarizati	on of a bond, bond moment, dipole moment and molecular	
-	Rotational Spectrum:Rotational spectrum of a diatomic molecule,	
	, moment of inertia, energy levels, selection rule, nature of	
0	determination of inter nuclear distance and isotopic shift.	
	al spectrum: (IR):	
	Il motion, degrees of freedom, modes of vibration, Vibrational	

 spectrum of a diatomic molecule, simple harmonic oscillator, energy levels, zero point energy, conditions for obtaining Vibrational spectrum, selection rule, nature of spectrum. Vibrational-Rotational spectrum of diatomic molecule Vibrating rotor, energy levels, selection rule, nature of spectrum, R and P branches, harmonic oscillator: energy levels, selection rule, fundamental band, overtones. Application of vibration rotation spectrum in determining Force constant. 	
Introduction to infrared spectra of simple molecules like H ₂ O and CO ₂ .	
 503.3 Raman Spectroscopy & IR Spectroscopy Raman Spectroscopy: Scattering of electromagnetic radiation, Rayleigh scattering, Raman scattering, nature of Raman spectrum, Stoke's lines, Anti-Stoke's lines, Raman shift, quantum theory of Raman spectrum, comparative study of IR and Raman spectra, rule of mutual exclusion. (Example of CO2 molecule) Infrared spectroscopy: Diatomic Molecules, Polyatomic Molecules, Characteristic Vibration Frequencies, Factors Affecting Group Frequencies. Qualitative Analysis –Identification of Structural Features, Quantitative Analysis, Sampling Procedures, Near Infrared Spectrometry, Applications of Infrared Spectroscopy 	
Reference Books:	

Chemical • Principles of instrumental analysis: Douglas a. Skoog	
Sciences V	 Introduction to Spectroscopy: Donald L. Pavia
	Organic Spectroscopy: William Kemp
	 Introduction to Molecular Spectroscopy: Gordon M. Barrow
	Molecular Luminescence Spectroscopy Methods and Applications
	John Wiley and sons
	• Concept Instrumentation and techniques in Atomic Absorption
	Spectroscopy: Perkin Elmer

Course Code: RUSBAS504

Course Title: Chemical Sciences VI

Academic Year 2023-24

T.Y.B.Sc.

186

COURSE OUTCOME	DESCRIPTION		
CO 1	Learn to interpret simple NMR spectra. Introduction to basic		
	concepts of hyphenated techniques which will be useful in		
	studying advanced instrumentation.		
CO2	Understand the importance of safe handling of biomatrices.		
	Should be familiar with routine diagnostic tests and advanced		
	instrumentation in pathological testing.		

Paper Code	Semester V	Lectures
RUSBAS504	Chemical Sciences VI	45
504.1 Nuclear Magnetic Spectroscopy Chemical shift, Shielding and deshielding of protons, low resolution N.M.R. spectrum of methanol and ethanol. PMR Spectroscopy: Basic theory of NMR, Nature of PMR spectrum, Chemical shift (∂ unit), Standard for PMR, Solvents used, Factors affecting Chemical Shift: Inductive effect, Anisotropic effect (with reference to C=C, <i>C</i> = <i>C</i> , C=O and benzene ring), Spin-spin coupling and coupling constant. Proton exchange application of deuterium exchange, Application of PMR in structure determination.		15
	emical methods of Analysis s: PAGE, SDS-PAGE, Western Blotting, 2D gel electrophoresis, AGE, ray	15
504.3 Bioan Introduction precautions to Biochemical a kidney test, liv Advanced in	alysis to Bioanalysis, Different sample matrices and special be taken while handling clinical samples nalysis of clinical samples: Glucose, calcium, ver test, electrolytes, proteins, complete blood count. strumentation in Bioanalysis: Flowcytometer, blood gas omatic haematology analyzer, blood glucose analyzer, alcohol	15

RUSBASP503 PRACTICALS

- 1. Gravimetric estimation of Nickel as Ni-DMG
- 2. Antioxidant activity of any one sample
- 3. **Flame photometric determination-** Flame photometric determination of Li/Na/K by Calibration Curve and Standard addition methods
- 4. Spectroscopic Techniques:
 - i. Atomic absorption spectroscopy (AAS)- Sample preparation only
 - ii. Infrared (IR) analysis (Glucose and Glycine)
 - iii. Nuclear Magnetic Resonance (Demo)
- 5. Handling of a biofluid (e.g. Plasma)

Chemical	Principles of instrumental analysis: Douglas a. Skoog
Sciences VI	 Introduction to Spectroscopy: Donald L. Pavia
	Organic Spectroscopy: William Kemp
	 Introduction to hyphenated techniques and applications in
	pharmacy: Patel
	 Principle and practice of Bioanalysis: Richard F. Venn

Innor

Course Code: RUSBAS505 Course Title: Computational Sciences V Academic Year 2023-24

T.Y.B.Sc.

COURSE OUTCOMES:

	Academic Year 2023-24	
	T.Y.B.Sc.	
COURSE OUTCOMES:		
COURSE	DESCRIPTION	
OUTCOME		
CO 1	Comprehend the logic behind dynamic programming algorithms.	
CO2	Effectively use bioinformatics algorithms like BLAST and FASTA for	
	sequence alignment and phylogenetic studies.	

 \sim

Paper Code	Semester V	Lectures 30
RUSBAS505	Computational Sciences V	
505.1 Dyna	amic Programming Algorithm	10
1. Needleman	n & Wunch, Smith & Waterman algorithms for Pairwise	
alignment		
2. Use of pai	rwise alignments for analysis of Nucleic acid and Protein	
-	and interpretation of results.	
3. Overview of	of BLAST, its variants & working, BLAST algorithm	
4. PSI BLAST	and PHI BLAST: Working and interpretation of result	
505.2 Mult	iple sequence alignment	10
1. Concept of	multiple sequence alignment (MSA)	
2. Algorithm	in MSA and its application	
3. Multiple se	equence alignment methods	
4. PSSM		
5. MSA Tool:	Clustal Omega- Working	
505.3 Mole	cular Phylogenetics	10
1. Phylogene	tic analysis	
2. Basic conc	epts in taxonomy and phylogeny.	
3. Definition	and description of Phylogenetic trees and various methods	
4. Clustering	method –UPGMA & NJ	
5. Cladistic m	ethod – Maximum Parsimony	
6. Phylogene	tic Analysis software Phylip/PAUP	

RUSBASP504	4 PRACTICALS
1.	Working with BLAST
2.	Basic BLAST
	i. Proteins
	ii. Nucleotides
3.	Advanced BLAST
	i. PHI BLAST
	ii. PSI BLAST
4.	Working with FASTA
	i. Proteins
	ii. Nucleotides
5.	Working of Clustal Omega
6.	Phylogenetic Tree construction & Visualization
7.	Basics of PHYLIP
8.	Basics of PAUP

Reference Books:

Computational	Algorithms and Data structure: Niklaus Wirth
Sciences V	• The Art of Computer Programming: Donald E. Knuth
	Multiple Sequence Alignment Methods: Russell and
	Springer
	• Molecular Evolution and Phylogenetics: Masatoshi Nei and
	Sudhir Kumar
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

•

Resolution Number: AC/II(22-23).3.RUS1

## S. P. Mandali's

## Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)



## Syllabus for:

## Program: Integrated M.Sc. in Bioanalytical Sciences

## (T.Y. B.Sc. Sem VI Syllabus)

## **Program Code: RUSBAS**

(Credit Based Semester and Grading System for

the academic year 2023-24)

### **GRADUATE ATTRIBUTES**

GA	GA Description			
	A student completing Bachelor's Degree in Science program			
	will be able to:			
GA 1	Recall and explain acquired scientific knowledge in a			
	comprehensive manner and apply the skills acquired in their			
	chosen discipline. Interpret scientific ideas and relate its			
	interconnectedness to various fields in science.			
GA 2	Evaluate scientific ideas critically, analyse problems, explore			
	options for practical demonstrations, illustrate work plans and			
	execute them, organise data and draw inferences.			
GA 3	Explore and evaluate digital information and use it for knowledge			
	upgradation. Apply relevant information so gathered for analysis			
	and communication using appropriate digital tools.			
GA 4	Ask relevant questions, understand scientific relevance,			
	hypothesize a scientific problem, construct and execute a project			
	plan and analyse results.			
GA 5	Take complex challenges, work responsibly and independently, as			
	well as in cohesion with a team for completion of a task.			
	Communicate effectively, convincingly and in an articulate manner.			
GA 6	Apply scientific information with sensitivity to values of different			
	cultural groups. Disseminate scientific knowledge effectively for			
	upliftment of the society.			
GA 7	Follow ethical practices at work place and be unbiased and critical			
	in interpretation of scientific data. Understand the environmental			
	issues and explore sustainable solutions for it.			
GA 8	Keep abreast with current scientific developments in the specific			
	discipline and adapt to technological advancements for better			
	application of scientific knowledge as a lifelong learner.			
	1			

РО	Description		
	A student completing Bachelor's Degree in Science program in the subject of Bioanalytical Sciences will be able to:		
PO 1	This course will impart high quality science education in a vibrant academic ambience with the faculty of distinguished teachers and scientists.		
PO 2	It will also equip students for the future who will take up the challenge of doing quality research & teaching and also contribute to industrial production and R & D in the fields of Bioanalysis, Bioinformatics and Nutraceutical Sciences.		
PO 3	It will amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis to better characterize the products useful as medicines as well as nutraceuticals.		

#### **PROGRAM OUTCOMES**

Raunarainki

## **Course Code: RUSBAS601**

## **Course Title: Entrepreneurship Skills**

## Academic Year 2023-24

## T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	To develop innovative ideas which may be commercially viable.
CO 2	Start building knowledge base and skill set which will be useful to start a new enterprise in future.

Paper Code		Semester VI	Lectures
RUSBAS601		ENTREPRENEURSHIP SKILLS	40
60	1.1 Launc	hing and Organizing An Enterprise	10
1.	Environmen problems.	nt scanning – Information, sources, schemes of assistance,	
2.	•	selection, market assessment, enterprise feasibility study	
3.	SWOT Analy		
4.		obilisation – How to Manage Finance, Sources of Finance,	
		, Raw material Planning.	
5.	-	trol and Quality Norms.	
		h Strategies, Networking & Innovation	10
1.		versification	
2.	Future Grov strategies	vth – Techniques of expansion and diversification, vision	
3.	Types of Bu	siness Organisations (Joint Stock, Co-operative, MNCs)	
		ource Management and Start Ups (Training Methods)	
5.	Case study of	of Successful Indian Brands.	
60	1.3 Princi	ples of Corporate Management	10
1.		f Management	
2.	-	f management (Planning, Organizing, Directing, Controlling,	
۷.	Coordinatin		
3.			
3. 4.	• •	it by Wandering Around (MBW)	
4.	managemen		

<b>601.4</b> Innovation	10
1. Introduction	
2. Principle 1 Seek Oppor	rtunity in adversity
3. Principle 2 Do more w	
4. Principle 3 Think & ac	
5. Principle 4 Keep it sim	
6. Principle 5 Include the	
7. Principle 6 Follow you	ır Heart
RUSBASP601 PRACTIC	CALS
1. Case Study/Assignment	nt/Project Report/Industrial Visit
	n/ Project management
	0.9//
Reference Books:	
Entropyon courts' - CL 'IL	• Jugand Innovation Dediew Dushby Alter
Entrepreneurship Skills	<ul> <li>Jugaad Innovation: Radjou, Prabhu, Ahuja</li> </ul>
Raunara	RURAUTORO

Intrepreneurship Skills     Jugaad Innovation: Radjou,Prabhu,Ahuja	Reference Books:	
• Jugaad Innovation: Radjou,Prabhu,Ahuja		<u> </u>
HUICONON	Entrepreneurship Skills	<ul> <li>Jugaad Innovation: Radjou, Prabhu, Ahuja</li> </ul>
		iahitononnous
	S.	
and all	and all	

## **Course Code: RUSBAS602**

## **Course Title: Biological Sciences V**

## Academic Year 2023-24

### T.Y.B.Sc.

22

COURSE OUTCOME	DESCRIPTION
CO 1	Study Phytochemistry with an emphasis on its applications in pharmaceuticals and bioanalysis. To perform and interpret qualitative
	tests for phytochemicals.
CO 2	To interpret results of molecular biology experiments like PCR and
	RFLP.
CO 3	Investigate the various aspects and applications of
	biopharmaceuticals as an upcoming branch in pharmaceuticals.

Paper Code	Semester VI	Lectures
RUSBAS602	Biological Sciences V	45
<b>602.1:</b> Herba	l Analysis	15
Chromatograph Chromatograph phytoconstitue drug discovery		
<b>602.2:</b> Techn	iques in Recombinant DNA Technology	15
	R, RAPD, Nucleic acid probes, Southern Blotting, Northern Vaccines, Biosensors and Biochips	
<b>602.3:</b> Introd	uction to Biopharmaceuticals & Biosimilars	15
Animal cells, Ac Analysis, Thera	Biopharmaceuticals, Sources of Biopharmaceuticals ( <i>E. Coli,</i> Iditional systems), Upstream & Downstream processing, Product peutic Hormones, Recombinant Blood Products & Therapeutic uction of antibodies, Vaccines & adjuvants	

### RUSBASP602 PRACTICALS

- 1. Standardization of a solvent for extraction of phytoconstituents
- 2. Estimation of alkaloids by gravimetry
- 3. Quantitation of tannins by colorimetry
- 4. Paper chromatography for Separation of Plant Pigments (Spinach)/ Separation of Amino acids
- 5. Thin Layer Chromatography of Alkaloids
- 6. Demonstration of SDS-PAGE
- 7. Sterility testing of biopharmaceuticals
- 8. Analysis of Biosimilars by Bradford's method & UV-Visible Spectrophotometer.
- 9. Study of Chromatographic fingerprint for raw material by: i) HPLTC ii) HPLC iii) GC

Biological Sciences V	The Medicinal Plant Industry: Wojesekera
	Pharmaceutical Chemistry: H.J.Roth, A.Kleemann
	<ul> <li>Pharmacognosy: Tyler, Brody, Robbers</li> </ul>
	<ul> <li>Molecular Biotechnology: Mukesh Pasupuleti</li> </ul>
	Biosimilars: Regulatory, Clinical and Biopharmaceutical
	development:Springer

## **Course Code: RUSBAS603**

## **Course Title: Chemical Sciences V**

### Academic Year 2023-24

### T.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Get associated to the theory and instrumentation of HPLC and GC.
CO 2	To be able to analyze and interpret simple chromatograms.
CO 3	To introduce basics of LC-MS and GC-MS as hyphenated techniques.

Paper Code	Semester VI	Lectures	
RUSBAS603	Chemical Sciences V	45	
<b>603.1</b> Liqui	d chromatography	15	
HPLC Instrum programming	atography and its development to HPLC and its applications entation, Pumps, solvent delivery system, isocratic and gradient modes, Sample introduction system, Columns, Detectors. Reversed mal phase chromatography.		
Gas Chromat applications Gas Chromate	ography, Gas Solid and Gas liquid Chromatography and its ography Instrumentation, Carrier gas supply, Injectors, Columns, apillary columns, Column oven and temperature programming, ctors.	15	
Introduction to ionization te ionization, a ionization), Co <b>Hyphenation</b> Applications	spectrometry & Hyphenated techniques to mass spectroscopy: Concept of mass to charge ratio, study of chniques(electron ionization, chemical ionization, electrospray atmospheric pressure ionization techniques, thermospray omponents of mass spectrograph. : Need of hyphenation, Interfacing devices of Liquid Chromatography-Mass Spectrometry and Gas hy-Mass spectrometry	15	

			11666
		, 5	
		oulor.	
in Pil	0		
	Sinni	anne	in Automation

## **Course Code: RUSBAS604**

## **Course Title: Chemical Sciences VI**

### Academic Year 2023-24

### T.Y.B.Sc.

COURSE	DESCRIPTION
OUTCOME	
CO 1	To be introduced to basic concepts of drug development and action
	and understand the importance of a bioanalyst in pharmaceutical
	industry.
CO 2	Realize the problems involved in analyzing trace elements and complex
	matrices and learn to choose the suitable bioanalytical method for
	their analysis.
CO 3	Apply techniques learned in bioanalysis for characterization of
	nutritional value of a food sample.

Paper Code	Semester VI	Lectures		
RUSBAS604	Chemical Sciences VI			
<b>604.1</b> Drug	development	15		
Formulations Drug efficience Routes of drug Different dosa Introduction to Discovery of a observation Classifications Development functional group Different type Structure and Paracetamol,	the following medicinal terms: Pharmacon, Pharmacophore, Drug Receptors, Drug-receptor interaction, Drug Potency, Drug toxicity, y, Pharmacopoeia. g administration with advantages and disadvantages age forms (emphasis on sustained release formulations) to Drug Discovery, Design and Development, a Lead compound: Screening, drug metabolism studies and clinical Anti-infective agents, Anti-cancer agents, CNS agents of drug: Pharmacophore identification, modification of structure or oup. ss of chemical transformation of drugs with specific examples. therapeutic use of Diclofenac sodium (DFS), Aceclofenac, Phenytoin, Aspirin, Atenolol, Laevodopa, Ciprofloxacin, e, Dapsone, Ethambutol			

<b>604.2</b> Micro analysis and Surface analysis	15
Microanalysis :	
Problems associated with trace analysis, Special extraction procedures for separating analyte/s from the complex matrix, Extraction of organic/inorganic analyte from organic/inorganic matrix. Special techniques and care to be taken during micro analysis <b>Surface analysis:</b>	
Surface chemistry, Phenomenon of adsorption, Adsorption isotherms Surface area by BET method, Pore size distribution, Particle size analysis Catalysis, Heterogeneous and homogenous catalysis	
<b>604.3</b> General Metabolism and Nutrition	15
Overview of mineral metabolism and abnormalities of mineral metabolism with respect to calcium, iron, iodine, fluoride, manganese, selenium	
Energy metabolism and nutrition: Concepts of calorific value, Respiratory quotient, BMR, RDA, Nutritional indices, proximate principles of diet, protein energy malnutrition, obesity, BMI, diseases related to obesity, glycemic index.	
Free radicals and anti-oxidants: reactive oxygen species- generation and damage, free radical scavenger systems, inflammation, respiratory, skin and age related diseases, atherosclerosis, lipid per oxidation, preventive and chain breaking anti- oxidants	

#### RUSBASP603 PRACTICALS

#### Separation of Organic mixtures:-

- 1. Volatile liquid + Non-volatile liquid ( Liquid + Liquid ) by fractional distillation method
- 2. Volatile liquid + Water insoluble solid (Liquid + Solid) by distillation method.

#### Separation Techniques: -

- 1. Column Chromatography of Separation of mixture of dyes/Separation of Plant Pigments (Spinach)
- 2. Ion Exchange Chromatography of Estimation of sodium using cation exchanger/Estimation of Mg using anion exchange resin column
- 3. High Performance Thin Layer Chromatography Menthol and Paracetamol
- 4. **High Performance Liquid Chromatography** Separation of modern drug (Diclofenac sodium) from their combination formulation.
- 5. Gas Chromatography Separation of solvent mixtures (Toluene and n-Hexane)

Chemical	Pharmaceutical Analysis: David Lee
Sciences VI	• Excipients and Delivery Systems of Pharmaceutical formulations:
	Karsa, Stephenson
	<ul> <li>Microanalysis of solids: Yacobi, Holt, Kazmerski</li> </ul>
	• Surface Analysis Methods in Material Science: Brett Sexton, R. C.
	Smart
	<ul> <li>Introduction to nutrition and Metabolism: David A. Bender</li> </ul>

<text><text><text><text>

## **Course Code: RUSBAS605**

## **Course Title: Computational Sciences V**

## Academic Year 2023-24

## T.Y.B.Sc.

COURSE OUTCO	JMES:
COURSE	DESCRIPTION
OUTCOME	
CO 1	Comprehend the programming logic for protein structure prediction,
	Cheminformatics and drug design.
CO 2	Learn to effectively use bioinformatics tools like Modeller, Marvin
	Sketch and iGem Dock for basic structural characterization.

Paper Code	Semester VI	Lectures
RUSBAS605	Computational Sciences V	30
<b>605.1</b> Protein structure	e prediction	10
1. Protein structure bas		
2. Computational predic	ction methods	
3. Homology modeling		
4. Protein threading		
5. Fold recognition	tion	
6. Tools used for predic 605.2 Cheminformatic		10
<b>UUJ.2</b> Glielinnormatic		10
1. Cheminformatics Intr	oduction	
2. Chemical structure st	-	
3. Cheminformatics too	S	
4. Applications		10
<b>605.3</b> Computational D	rug designing	10
1. Introduction to drugs		
2. Steps in drug discove	ry & development	
3. Computational Drug		
4. Structure based drug	designing	
5. Virtual Screening		
6. Novel drug Targets		

RUSBASP604 PRACTICALS	
1. Introduction to homology modelling using Modeller (demonstration)	
2. Automated modelling using Swiss Model	
3. Validation of predicted structures a. ProSA	
b. Verify 3D	
c. SAVES	
4. Chemical structure designing- Marvin Sketch/ Marvin View	
5. Virtual Screening- Docking using various online tools (iGemDock, CB Dock)	

eference Books:	Cheminformatics: Johann Gastieger
	<ul> <li>Bioinformatics and drug Discovery: Richard S. Larson</li> </ul>
	· OK
$\mathcal{O}_{\mathcal{O}}$	
10	
S.	
Ko.	