Resolution Number: AC/II(23-24).2.RUS1

S. P. Mandali's

Ramnarain Ruia Autonomous College ys colle

(Affiliated to University of Mumbai)

Syllabus for:

Program: Integrated M.Sc. in Bioanalytical sciences (S.Y. B.Sc. Syllabus)

Program Code: RUSBAS

(As per the guidelines of National Education Policy 2020-Academic year 2024-25)

(Choice based Credit System)

ami

GRADUATE ATTRIBUTES

GA	GA Description	
	A student completing Bachelor's Degree in Science program will	
	be able to:	
GA 1	Recall and explain acquired scientific knowledge in a comprehensive	
	manner and apply the skills acquired in their chosen discipline.	
	Interpret scientific ideas and relate its interconnectedness to various	
	fields in science.	
GA 2	Evaluate scientific ideas critically, analyse problems, explore	
	options for practical demonstrations, illustrate work plans and	
	execute them, organise data and draw inferences.	
GA 3	Explore and evaluate digital information and use it for knowledge	
	upgradation. Apply relevant information so gathered for analysis	
	and communication using appropriate digital tools.	
GA 4	Ask relevant questions, understand scientific relevance,	
	hypothesize a scientific problem, construct and execute a project	
	plan and analyse results.	
GA 5	Take complex challenges, work responsibly and independently, as	
	well as in cohesion with a team for completion of a task.	
	Communicate effectively, convincingly and in an articulate manner.	
GA 6	Apply scientific information with sensitivity to values of different	
	cultural groups. Disseminate scientific knowledge effectively for	
	upliftment of the society.	
2		
GA 7	Follow ethical practices at work place and be unbiased and critical in	
	interpretation of scientific data. Understand the environmental	
8.0	issues and explore sustainable solutions for it.	
GA 8	Keep abreast with current scientific developments in the specific	
	discipline and adapt to technological advancements for better	
	application of scientific knowledge as a lifelong learner.	

Program Outcomes (PO)

РО	
	Description
	A student completing Bachelor's Degree in Science program in the
	subject of Bioanalytical Sciences will be able to:
PO 1	Gain high quality science education in a vibrant academic
	ambience with the faculty of distinguished teachers and scientists.
PO 2	Take up the challenge of doing quality research and teaching and
	also contribute to industrial production and R & D in the fields of
	Bioanalysis, Bioinformatics and Nutraceutical Sciences.
PO 3	Amalgamate classical analytical chemical techniques with modern
	genomic and proteomic technologies of manufacturing and
	analysis to better characterize the products useful as medicines as
	well as nutraceuticals.
	ronoir
Ramina	rain Ruia Automonic

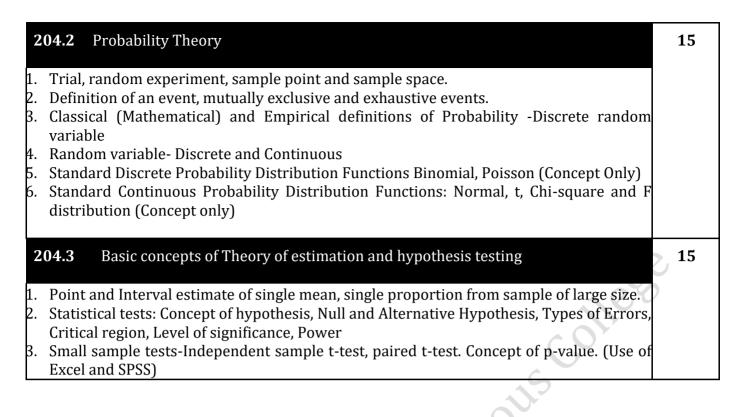
Semester III

Course Code: RUSMIBAS0204

Subject IV: Computational Sciences

Course Title: Statistics II

Type Course: Discipline Specific Core Course (Minor)


Academic Year 2024-25

S. Y. B.Sc.

COURSE OUTCOMES:

Academic Year 2024-25		
	S. Y. B.Sc.	
COURSE OUTCOMES:		
COURSE OUTCOME	DESCRIPTION	
CO 1	Analyze significance and validity of experimental results with statistical tests such as correlation and regression	
CO 2	Apply the concepts of probability theory in biostatistics.	
CO 3	Apply hypothesis testing in validating experimental results.	

Paper Code	Semester III	Credits/
RUSMIBASO20	4 Statistics II	Hours 3/45
204.1 Corre	ation, Simple linear Regression Analysis	15
 Karl Pear Spearma Concept line by m Relations 	g relationship using Scatter Diagram, son's Product moment correlation coefficient and its properties. I's Rank correlation. (With and without ties) of Simple linear regression. Principle of least squares. Fitting a straight ethod of least squares (Linear in Parameters) hip between regression coefficients and correlation coefficient, cause and tionship, Spurious correlation.	
· •	nd use of coefficient of determination (R ²). of association with the help of Tau A, Tau B, Tau C, Gamma and Lambda,	

RUSMIBASPO204	PRACTICALS	Credits/Hours 1/30
 Average, std. devi Correlation coeffi Identify the error 		ental data
	Ruia	
	arailt	
Ran		

Reference Books:

	ia hitonomous
	Autonomous
	Autonomou
	Autone
	iat
Rannarain	

Semester IV

Course Code: RUSMIBASE214

Subject IV: Computational Sciences

Course Title: Bioinformatics

Type of Course: Discipline Specific Core Course (Minor)

Academic Year 2024-25

S. Y. B.Sc.

Course outcomes:

	S. Y. B.Sc.
Course	outcomes:
CO1	Describe various bioinformatics databases
CO2	Apply bioinformatics databases and tools to study DNA and protein
	sequences, protein structure and metabolic pathways
CO3	Explain the various methods for pairwise sequencing alignment
	marain Ruia Automon

Paper Code	Semester IV	Credits/Hours 3/45
RUSMIBASE	214 Bioinformatics	
214 1	Introduction to Bioinformatics	15
1. Introd	luction to Bioinformatics & Databases Application of Bioinformation	cs
2. Major	Bioinformatics resources: NCBI, EBI, ExPASy	
3. Nucle	ic acid: GENBANK, EMBL, DDBJ, INSDC	
4. Protei	in structure: Domains, motifs (Pfam/Prosite)	
5. Protei	in sequence databases: Uniports, PIR, SWISSPROT, TrEMBL	
6. Litera	ture database: PUBMED	
7. Genor	ne database: GSS, Genome	
•	alized database: OMIM	
9. Protei	in structure databases: PDB	6
10. Metab	oolic Pathway database: KEGG	A 0,0
214.2	Basics of Sequencing	15
1. Molec	cular biology basics Genomics 🛛 💦 🧹	
2. Protee	omics	
	sequencing technology: Whole-genome shotgun sequenci	ng
	gies Protein sequencing methods	
4. Seque	ence File formats	
214.3	Pairwise Sequence Alignment	15
1. Basic	Concepts of sequences similarity, Identity and homology Definiti	on
of hom	nologs, orthologs, paralogs	
2. Conce	pts of sequence alignments Pairwise sequence alignment metho	ds
DOT N	Matrix analysis	
3. Scorin	ng matrices: Basic concepts of scoring matrix, PAM and BLOSU	JM
series	and Principles based on which these matrices are derived	
RUSMIBASP	E214 PRACTICALS	Credits/Hours 1/30
1. INSDO	C- NCBI, EMBL, DDBJ	
2. Seque	ence databases- EMBL-EBI, GenBank, UniProt	
3. Struct	cure databases- PDB	
4. Doma	in database: Prosite, PRINT, Pfam.	
5. Specia	alized database: KEGG, PUBMED, OMIM, Use of Rasmol	

References:

Computational Sciences	 Computational Biology and Bioinformatics: Ka-Chun Wong Chapter 1, Advanced Data Mining Technologies in Bioinformatics
8a.	

Ramanan Ruta Automonous College