S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: Integrated M.Sc. in Bioanalytical Sciences

(Post-graduate syllabus)

Program Code: RPSINBAS

As per guidelines of National Education Policy 2020-Academic Year 2024-25

(Choice Based Credit System)

GRADUATE ATTRIBUTES

GA	GA Description			
	A student completing Bachelor's/Master's Degree in Science			
	program will be able to:			
GA1	Demonstrate in depth understanding in the relevant science			
	discipline. Recall, explain, extrapolate and organize conceptual			
	scientific knowledge for execution and application and also to			
	evaluate its relevance.			
GA2	Critically evaluate, analyze and comprehend a scientific problem.			
	Think creatively, experiment and generate a solution			
	independently, check and validate it and modify if necessary.			
GA3	Access, evaluate, understand and compare digital information from			
	various sources and apply it for scientific knowledge acquisition as			
	well as scientific data analysis and presentation.			
GA4	Articulate scientific ideas, put forth a hypothesis, design and			
	execute testing tools and draw relevant inferences. Communicate			
	the research work in appropriate scientific language.			
GA5	Demonstrate initiative, competence and tenacity at the workplace.			
	Successfully plan and execute tasks independently as well as with			
	team members. Effectively communicate and present complex			
	information accurately and appropriately to different groups.			
GA6	Use an objective, unbiased and non-manipulative approach in			
	collection and interpretation of scientific data and avoid plagiarism			
	and violation of Intellectual Property Rights. Appreciate and be			
	sensitive to environmental and sustainability issues and understand			
	its scientific significance and global relevance.			
GA7	Translate academic research into innovation and creatively design			
	scientific solutions to problems. Exemplify project plans, use			
	management skills and lead a team for planning and execution of a			
0	task.			
GA8	Understand cross disciplinary relevance of scientific developments			
	and relearn and reskill so as to adapt to technological			
OO	advancements.			

PROGRAM OUTCOMES

РО	Description			
	A student completing Integrated Master's Degree in Science			
	program in the subject of Bioanalytical Sciences will be able			
	to:			
PO 1	Gain high quality science education in a vibrant academic ambience			
	with the faculty of distinguished teachers and scientists.			
PO 2	Take up the challenge of doing quality research and teaching and			
	also contribute to industrial production and R & D in the fields of			
	Bioanalysis, Bioinformatics and Nutraceutical Sciences.			
PO 3	Amalgamate classical analytical chemical techniques with modern			
	genomic and proteomic technologies of manufacturing and analysis			
	to better characterize the products useful as medicines as well as			
	nutraceuticals.			

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	Course Type	CREDITS
		RPSINBASO601/ RPSBASO601	OMICS	Discipline Specific core course	3
		RPSINBASO602/ RPSBASO602	Bioanalytical Techniques	Discipline Specific core course	3
		RPSINBASO603/ RPSBASO603	Modern Analytical Instrumentation	Discipline Specific core course	3
		RPSEINBASO604/ RPSEBASO604	Xenobiotic Analysis	Elective	3
		RPSEINBASO605/ RPSEBASO605	Cancer Biology		
I.M.Sc. II	IX	RPSINBASP0601/ RPSBASP0601	Practicals on RPSINBASO601	Discipline Specific core course	1
		RPSINBASP0602/ RPSBASP0602	Practicals on RPSINBASO602	Discipline Specific core course	1
		RPSINBASP0603/ RPSBASP0603	Practicals on RPSINBASO603	Discipline Specific core course	1
	2	RPSEINBASPO604/ RPSBASPO604	Practicals on RPSEINBAS0604	Elective	1
6	9),	RPSEINBASPO605/ RPSBASPO605	Practicals on RPSEINBAS0605		
		RPSRPINBASO606/ RPSRPBASO606	Research Project		6
	•		Total	Credits	22

	RPSINBASE612/ RPSBASE612 Pharmaceutical Development and V RPSEINBASE613/ RPSEBASE613 RPSEINBASE614/ RPSEBASE614 X RPSINBASPE611/ RPSBASPE611 RPSINBASPE612/ RPSBASPE612 RPSINBASPE613/	,	Clinical Research Industry	Discipline Specific core course	3
		•	Pharmaceutical Method Development and Validation	Discipline Specific core course	3
		·	Biopharmaceuticals & Biosimilars	Elective	3
			Xenobiotic Analysis	Elective	3
I.M.Sc. II		·	Practicals on RPSINBASE611	Discipline Specific core course	1
		,	Practicals on RPSINBASE612	Discipline Specific core course	1
		Practicals on RPSEINBASE613	Elective	1	
		RPSINBASPE614/ RPSBASPE614	Practicals on RPSEINBASE614	Elective	1
		RPSINTINBASE615/ RPSTINBASE615	Research Project		6

Course Code: RPSINBASO601

Course Title: OMICS (Core Course) Academic year 2024-25

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION	
CO1	Explain the applications of PCR techniques	
CO2	Elaborate on the techniques involved in genome studies and also understand the significance of pharmacogenomic studies	
CO3	Explain the techniques involved in transcriptome studies	
CO4	Perform techniques involved in protein purification	
CO5	Hands-on different methodologies used for proteomic and metabolomic studies	

Paj	per Code	Semester IX- Paper I	Credits/ Hours	
RPSIN	IBAS0601	OMICS	3/45	
601.1	: Genomics			
1.	Introduction	on to genomics and its types.		
2.	Genome s	sequencing techniques- Sanger sequencing, Maxim Gilbert		
	Sequencing	g, Next generation sequencing techniques (Illumina sequencing,		
	454 pyrose	equencing, etc), Overview of whole genome sequencing		
3.	Types of	SNPs and techniques to identify them (suitable examples of		
		based on restriction digestion, microarray, DNA conformation,	15	
	and DNA s	equencing).	13	
4.	4. Identification for SNPs for diseases- Haplotypes, Linkage disequilibrium,			
	Genome wide association			
5.	5. Pharmacogenomics Correlation of SNPs with variations of ADME. (With			
	suitable ex	amples such as CYP gene variations), Variations in ethnic groups		
	and races.			
6.	Introduction	on to epigenomics		
601.2	: Transcripto	omics	15	

2. 3.	Introduction to transcriptome, structure of eukaryotic m-RNA, exons, introns, splice variants. Types of non-coding RNAs cDNA libraries and Expressed Sequence Tags (ESTs) Techniques of gene expression analysis (Northern blot, in-situ hybridization, qRT-PCR, microarrays, RNA-seq, etc), Overview whole transcriptome sequencing Transcriptomics biomarkers- mRNA and non-coding RNAs as biomarkers with suitable examples.	
601.3:	Proteomics and Metabolomics	
1. 2. 3. 4. 5.	Protein extraction, separation, purification and identification Types of Proteomics with suitable examples—, Functional Proteomics, Structural Proteomics, Post translational modifications, Protein-Protein interaction, Protein expression profiling, Proteome mining, Human Proteome Project Protein fingerprinting techniques, De Novo sequencing of protein Advanced techniques in proteomics: Co-immunoprecipitation, Yeast- 2hybrid, Label free and label -based methods for protein quantification Introduction to Peptidomics Metabolomics- Lipidomics, Glycomics	15
	BASPO601 PRACTICALS	Credits/
		Hours 1/30
2. 3. 4.	y S	

References:

6. RT-PCR (demo)

- 1. iGenetics A molecular Approach: Russell
- 2. Lehninger's Principle of Biochemistry: David Nelson, Michael Cox: Springer
- 3. Principles of Gene Manipulation and Genomics: Sandy B. Primrose, Richard Twyman
- 4. Genomics: Concepts and Applications: Caleb Elliot
- 5. Genomics and Proteomics-Functional and Computational Aspects: Sándor Suhai
- 6. Principles of Proteomics: Richard Twyman
- 7. Metabolomics: A Powerful Tool in Systems Biology
- 8. Omics in Clinical Practice- Genomics, Pharmacogenomics, Proteomics, and Transcriptomics in Clinical Research: Yu Liu

Course Code: RPSINBAS0602

Course Title: Bioanalytical Techniques (Core Course)

Academic year 2024-25

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO1	Explain different analytical techniques like XRD-XRF
CO2	Analyse and interpret mass spectrometric data for identification and quantification of analytes.
CO3	State and explain the principles and applications of NMR spectroscopy with special emphasis on Bioanalysis

Paper Code Semester IX- Paper II		Credits/ Hours	
RPSI	NBASO602	Bioanalytical Techniques	3/45
602.1	: XRD and XF	RF	
1.	Theory of X	KRD and XRF	
2.	Crystal stru	acture of solids and concept of crystallography	
3.	Bragg's law	v of diffraction	
4.	Instrument	tation of powdered XRD	
5.	Application	n in the determination of polymorphs in pharmaceutical	15
	compounds		13
6.	Percent cry	ystallinity, Single crystal XRD	
7.	Determina	tion of the 3D structure	
8.	Wavelengt	h dispersive (WD) and energy dispersive (ED) XRF	
9.	Instrument	tation of WD and (ED)XRF	
10.	Application	ns of XRF for elemental analysis	
602.2	Mass Spectr	ometry(MS)	15

1.	. Evolution of MS and its importance as a detector			
2.	Components of Mass Spectrometer:			
	a) Inlets			
	b) Ion sources- GC-MS: EI,CI; LC-MS: ESI,API(APCI & APPI),			
	FI,FD,FAB,TSP, MALDI			
	c) Analyzers- QP,TOF, Ion trap, Magnetic sector, Hybrid analyzers			
	d) Detectors			
3.	Importance of vacuum in MS system			
4.	Interfaces used in LC-MS & GC-MS			
5.	Sample preparation for MS			
6.	Introduction to MS/MS (tandem MS): GC/MS and GC/MS/MS; LC/MS and			
	LC/MS/MS	V		
7.				
	Systems			
602.3	: NMR and its applications in Bioanalysis			
1.	Basic Phenomenon of Nuclear Magnetic Resonance (NMR) Spectroscopy:			
	Nuclear spin transition, magnetic dipole			
2.	Chemical Shielding	15		
3.	Characteristic ¹ H, ¹³ C and ¹⁵ N chemical shifts	15		
4.	Factors affecting chemical shifts			
5.	Chemical shift dispersion and multi-dimensional NMR			
6.	Applications in Bioanalysis			
RPSIN	RPSINBASPO602 PRACTICALS			
		Hours		
		1/30		
1 HD	I Canalysis of modorn drug from plasma			

- 1. HPLC analysis of modern drug from plasma
- 2. LC/MS quantitation of a modern drug (e.g. Diclofenac Sodium, Ezetimibe etc.)
- 3. GC/MS separation of plant essential oil
- 4. Mass Fingerprinting of peptides using a suitable sample
- 5. IR analysis of a purified compound
- 6. Structural elucidation of a compound on the basis of its FTIR, NMR and MS outputs.

REFERENCES:

- 1. Principles of Instrumental Analysis Skoog, Holler, Crouch
- 2. Modern Practices in Gas-Chromatography- Robert L. Grob, Eugene F. Barry
- 3. Radioactive Tracer Techniques by George Keene Schweitzer
- 4. Handbook of Analytical Techniques, Vol I & II- Wiley Publications

Course Code: RPSINBAS0603

Course Title: Modern Analytical Instrumentation (Core Course) Academic year 2024-25

COURSE OUTCOMES

COURSE	DESCRIPTION	
OUTCOME	92	
C01	Gain a comprehensive understanding of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), differential thermal analysis (DTA), and other thermal analysis techniques, including their principles, instrumentation, and applications.	
CO2	Recognize the fundamental principles of chiral chromatography, including the mechanisms of enantiomeric separation, types of chiral stationary phases, and selection criteria for appropriate chromatographic conditions.	
CO3	Explain the principles and instrumentation of CD-ORD, including its application in analyzing the structural and conformational properties of chiral molecules.	

Paper Code		Semester IX- Paper III	Credits/
			Hours/
RPSIN	BAS0603	Modern Analytical Instrumentation	3/45
603.1	: Thermal A	Analysis	
1.	Principles	s of Thermal Analysis	
2.	Instrume	ntation Requirements	
3.	Sample pr	reparation, Experimental conditions, Techniques in Thermal	15
	Analysis		13
4.	Application	ons of Thermal Analysis	
5.	Thermal a	analysis of Bhasma preparations (Case studies e.g. Praval bhasma,	
	Lohabhas	ma)	
603.2	Chiral Chr	omatography	15

1.	Concept of chirality	
	Types of Chiral Chromatographic techniques (Direct and Indirect Chiral	
	HPLC).	
3	Principle of chiral separation using chiral liquid chromatography.	
	Chiral HPLC- Instrumentation	
	Classes and types of Chiral Stationary Phases (CSPs) – brush type, helical	
Э.	polymer type, cavity type, protein based, macrocyclic glycopeptide based;	
	materials used for preparing them and their chemistry, mobile phases used	
	in Chiral HPLC.	
6	Special type of detectors used in Chiral HPLC.	. 0
	Applications of chiral HPLC in analysis of pharmaceuticals, pesticides and	00
/.	natural products.	30
603 3	CD-ORD	
1.	Molecular dissymmetry and chiroptical properties, nature of light – linearly	
2	and circularly polarised light	
۷.	Circular Dichroism, CD Spectroscopy instrumentation and its application in	
2	analysis of proteins and nucleic acids.	15
	Optical Rotary Dispersion, Circular birefringence and cotton effect	
4.	ORD Spectroscopy and its instrumentation.	
	Types of ORD curves and their applications.	
	Octant Rule and α –halo ketone rule with their applications.	
	Differences between CD and ORD. BASPO603 PRACTICALS	Cradita/
KPSIN	BASPUOUS PRACTICALS	Credits/ Hours
1	Purification of a compound using preparative HPTLC/HPLC.	110015
2.		1/30
3.		1,00
4.		
	Metabolic profiling using HPTLC	
٥.	Metabone promining using the race	

References:

- 1. Stereochemistry of Organic Compounds by D.Nasipuri
- 2. Chiral Analysis: Advances in Spectroscopy, Chromatography and Emerging Methods by Daniel W. Armstrong. (2nd edition)
- 3. Fundamentals of Analytical Chemistry by D.A Skoog, D.M. West, F.J. Holler.

Course Code: RPSRPINBASO606

Course Title: Research Project

Academic year 2024-25

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	
CO1	Formulate hypothesis, carry out literature survey, test hypothesis by designing experiments, and interpret the results
CO2	State the importance of proper documentation and present the research carried out.
CO3	Get trained to face the challenges of industry and acquire requisite skills in the field of Bioanalysis and research.

DETAILED SYLLABUS			
Paper Code	Semester IX- Paper VI	Credits/ Hours	
RPSRPINBAS0606	Research Project	6/180	
Research project			
1. Students are requi	red to complete a Research project for duration of 8-12 weeks.		
2. Students are requi by the college/dep	red to submit a report of the Research project in the format provided artment.		
3. A certificate of su attached in the sub	accessful completion provided by the research institute should be omitted report.	(0)	
	d to prepare a PowerPoint presentation and present the same at the kamination and should face <i>viva voce</i> based on the project work.	,0	
Research Review:			
	ntify a topic for literature review		
	at least 15 research articles for the review topic		
student's own words.	ld be a detailed, comprehensive summary of the research articles in		
prepared by the stude	eport as well as the soft copy report of the review article should be nt as per the guidelines/ format provided by the institution & should edepartment before the examination		
time of Practical exami	to prepare a PowerPoint presentation and present the same at the ination and should face Viva voce based on review article.		
Research based on Sur			
	ntify a topic for survey/case study		
questionnaire/intervie	orepare an outline for data collection that can include ews/referencing and present the same. Data collection can be done		
online, if required.			
same.	data for survey/case study in a stipulated time and keep record of the		
4. After data, collection and write final conclus	n, students should analyze the data using appropriate statistical tests sion of the study.		
		1	

- 5. Final hardbound report as well as the soft copy of the survey/case study report should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination
- 6. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on survey/case study article.

Course Code: RPSINBASE611

Course Title: Clinical Research Industry (Core Course)

Academic year 2024-25

COURSE OUTCOMES

COURSE	DESCRIPTION
OUTCOME	110.0
CO1	Give an account of the various aspects of clinical research.
CO2	Evaluate the case report format involved in BA/BE study.
CO3	Calculate pharmacokinetic parameters for the given drug.

Paper Code	Semester X- Paper I	Credits/Hour
RPSINBASE611	Clinical Research Industry	S 2/45
		3/45
	Conduct of Clinical Study	
	al Designs: Types	
	for clinical study	
_	ation, Monitoring, Study closeouts	15
	of clinical audits	
5. Regulatory		
	n and submission of clinical dossier	
	lity and Bioequivalence	
_	d Bioequivalence (8 L)	
 Concept of 		
	s to evaluate BA and BE of a drug	
Evaluating	BA and BE of a drug	
4. Design and	conduct of a BA and BE study	
Data recor	d and reporting in BA and BE study	
6. Regulatory	requirements of BA and BE	
Pharmacovigilanc	e (4 L)	15
	n to Pharmacovigilance	
	and need for Pharmacovigilance	
	ario and the role of regulatory in Pharmacovigilance	
	gilance and safe use of medicines (with case studies)	
Therapeutic Drug		
	therapeutic drug monitoring	
	al techniques in TDM	
	nd practical issues of TDM	
	economics of TDM	4 =
611.3: Clinical Dat	a Management	15

- 1. Introduction to CDM
- 2. Collection, Cleaning, and Management of subject data
- 3. Tools for CDM
- 4. Regulations, Guidelines, and Standards in CDM
- 5. The CDM Process
- 6. Review and finalization of study documents
- 7. Database designing, Data Collection
- 8. CRF tracking
- 9. Data entry & Validation, Medical Coding
- 10. Roles and Responsibilities in CDM

RPSINBASPE611 PRACTICALS

Credits/Hours

1/30

- 1. Calculation of AUC and bioequivalence from the given data (2 expts.)
- 2. Calculation of different Pharmacokinetic parameters like K_a , K_e , t $_{1/2}$, C_{max} , T_{max} and AUC from the given blood data.
- 3. Study of sample forms, checklists and logs of a clinical study
- 4. Evaluation of a BA/BE Report
- 5. Introduction to registry resources such as ct.gov
- 6. Introduction to medical writing

References:

- 1. Principles of Good Clinical Practice: McGraw, George, Shearn, Hall and Thomas
- 2. Good Clinical Practice Standard Operating Procedures for Clinical Researchers: Graeme Scott, Josef Kolman, Paul Meng
- 3. Clinical Trials Audit Preparation: A Guide for Good Clinical Practice (GCP) Inspections: Vera Mihajlovic-Madzarevic
- 4. Design & Analysis of Bioavailability & Bioequivalence studies: Shein-Chung Chow & Jen-Pei Liu
- 5. Biopharmaceutics Applications in Drug Development: Rajesh Krishna & Lawrence Yu
- 6. Bioavailability and Bioequivalence in Pharmaceutical technology: T. K. Pal, P. K. Ganesan
- 7. Therapeutic Drug Monitoring: Newer Drugs and Biomarkers: Amitava Dasgupta
- 8. Therapeutic Drug Monitoring and Toxicology by Liquid Chromatography: Wong

Course Code: RPSINBASE612

Course Title: Pharmaceutical Method Development and Validation (Core Course)

Academic year 2024-25

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION	
CO1	Perform method development and validation using analytical	
	instruments.	
CO2	Comprehend the additional issues of endogenous substances and	
	biomarkers in Bioanalytical Method Development.	
CO3	Perform method validation using sophisticated analytical instruments	
	like HPLC or GC.	

Paper Code	Semester X- Paper II	Credits/Hours
RPSINBASE612	Pharmaceutical Method Development and Validation	3/45
612.1: Validation in		
1. Types of v	alidation in Pharma: Analytical, Process, Cleaning and	
Equipment		
	dation: Design, Qualification and verification	15
	idation and its significance	13
	ıipment validation-IQ, OQ, PQ	
_	Installation Qualification, Operational Qualification,	
	e Qualification of any one analytical instrument.	
_	ethod Development (AMD) and Analytical Method Validation	
(AMV)		
_	thod development and validation, Parameters for Method	15
Validation, ICH		
	pment and Validation in HPTLC, GC, GCMS, HPLC and LC-	
	Methodology and troubleshooting (with suitable examples)	
Validation (BMV)	Method Development (BMD) and Bioanalytical Method	
	od Development (BMD) (07 L)	
	or Method development	
	etween AMD and BAMD, AMV and BAMV.	
	requirements of validation	
	od Validation (BMV) (08L)	15
1. Pre- study V	alidation.	
2. Selectivity, A	Accuracy, Precision, Recovery, Calibration Curve, Sensitivity,	
Reproducibi	lity, Stability Incurred sample re-analysis (ISR).	
	ion and Additional issues like Endogenous substances &	
Biomarkers	etc.	
4. In-Study Val	idation.	

RPSINBASPE612 PRACTICALS	
	Credits/Hours
1. GC analysis of herbal raw material & ASU formulations	
2. Analytical Method Validation (any one example)	1/30
3. Interpretation of GCMS spectra	1/30
4. Interpretation of LCMS spectra	

References

- 1. Principles of Instrumental Analysis, Author: Skoog, Holler, Crouch
- 2. Method Validation in Pharmaceutical Analysis, Edited by: Ermer&Nethercote
- 3. Analytical chemistry by open learning- Mass spectrometry
- 4. Analytical Method Development And Validation: Swartz and Krull
- 5. Validation of Analytical Methods, Methodology and Statistics : Shrivastava and Saxena
- 6. Bioanalytical Method Validation: Waghulkar, Deshpande & Rathod

Course Code: RPSINTINBASE615

Course Title: Project Work

Academic year 2023-24

COURSE OUTCOMES

COURSE OUTCOME	DESCRIPTION
CO1	Student will be trained to face the challenges of industry and will acquire requisite skills in the field of Bioanalysis and research.
CO2	Students should understand the importance of proper documentation and should be able to present the research carried out.

Paper Code	Semester X- Paper V	Credits/Hours
RPSINTINBASE615	Research Project	10/300
Industrial Training		
1. Students are r	equired to complete an Industrial Training for duration of 8-12	
weeks.		
2. Students are	required to submit a report of the Industrial Training in the	
format provided by the	e college/department.	
	of successful completion provided by the company/research	
	ached in the submitted report.	
_	pected to prepare a PowerPoint presentation and present the	
	Practical examination and should face viva voce based on the	
Training.		
Research Project	, 6	
-	ed to identify a research problem relevant to the subject	
=	rch should be interdisciplinary, and should involve statistical	
analysis.		
<u> </u>	review should be carried out by the students.	
	should be submitted by student and should get approval from	
mentor(s) allotted by	•	
	ort and update the allotted mentor regarding the project work.	
-	cted to support detailed report of the project work such as	
Laboratory notebooks		
_	port as well as the soft copy report of the project work should be	
	ent as per the guidelines/ format provided by the institution &	
should submit the sam	e to the department before the examination.	

8. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on the project work.

Research Review:

- 1. Students should identify a topic for literature review
- 2. They should review at least 15 research articles for the review topic
- 3. Review article should be a detailed, comprehensive summary of the research articles in student's own words.
- 4. Final hardbound report as well as the soft copy report of the review article should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination
- 5. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on review article.

Research based on Survey/Case study

- 1. Students should identify a topic for survey/case study
- 2. They should prepare an outline for data collection that can include questionnaire/interviews/referencing and present the same. Data collection can be done online, if required.
- 3. They should gather data for survey/case study in a stipulated time and keep record of the same.
- 4. After data, collection, students should analyze the data using appropriate statistical tests and write final conclusion of the study.
- 5. Final hardbound report as well as the soft copy of the survey/case study report should be prepared by the student as per the guidelines/ format provided by the institution & should submit the same to the department before the examination
- 6. Student is expected to prepare a PowerPoint presentation and present the same at the time of Practical examination and should face Viva voce based on survey/case study article.