

Resolution No: AC/II(23-24).2.RUS1

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus For:

Program: Integrated M.Sc. in Bioanalytical Sciences

(F.Y.B.Sc. Syllabus)

Program Code: RUSBAS

(As Per Guidelines of National Education Policy 2020 - Academic Year 2024-25)

(Choice Based Credit System)

GRADUATE ATTRIBUTES

GA	GA Description	
	A student completing Bachelor's Degree in Science program	
	will be able to:	
GA 1	Recall and explain acquired scientific knowledge in a	
	comprehensive manner and apply the skills acquired in their	
	chosen discipline. Interpret scientific ideas and relate its	
	interconnectedness to various fields in science.	
GA 2	Evaluate scientific ideas critically, analyse problems, explore	
	options for practical demonstrations, illustrate work plans and	
	execute them, organise data and draw inferences.	
GA 3	Explore and evaluate digital information and use it for knowledge	
UA 3	upgradation. Apply relevant information so gathered for analysis	
	and communication using appropriate digital tools.	
GA 4	Ask relevant questions, understand scientific relevance,	
	hypothesize a scientific problem, construct and execute a project	
	plan and analyse results.	
GA 5	Take complex challenges, work responsibly and independently, as	
	well as in cohesion with a team for completion of a task.	
	Communicate effectively, convincingly and in an articulate	
	manner.	
GA 6	Apply scientific information with sensitivity to values of different	
	cultural groups. Disseminate scientific knowledge effectively for	
0,0,	upliftment of the society.	
GA 7	Follow ethical practices at work place and be unbiased and critical	
	in interpretation of scientific data. Understand the environmental	
	issues and explore sustainable solutions for it.	
GA 8	Keep abreast with current scientific developments in the specific	
	discipline and adapt to technological advancements for better	
	application of scientific knowledge as a lifelong learner.	

PROGRAM OUTCOMES

PO	Description
	A student completing Bachelor's Degree in Science program in the subject of Bioanalytical Sciences will be able to:
PO 1	This course will impart high quality science education in a vibrant academic ambience with the faculty of distinguished teachers and scientists.
PO 2	It will also equip students for the future who will take up the challenge of doing quality research & teaching and also contribute to industrial production and R & D in the fields of Bioanalysis, Bioinformatics and Nutraceutical Sciences.
PO 3	It will amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis to better characterize the products useful as medicines as well as nutraceuticals.

Subject IV- Computational Sciences RUSBAS.0104

Course Title: Mathematics Academic Year 2024-25 F.Y.B.Sc.

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	,100
CO 1	Adapt and apply the basic arithmetic calculations.
CO 2	Apply the mathematical equations to find solutions to given problems.

Paper Code	Semester I	Credits/
RUSBAS.0104	Mathematics	Hours
		2/30
104.1	Matrices and System of Linear Equations	15
Matrices over R (order 2 & 3): Matrix operations (addition, subtraction, scalar multiplication, matrix multiplication, transpose of a matrix (it's properties), inverse by elementary row transformation, adjoint method, solution of system of equation both homogenous and non-homogenous using matrix (concept of Rank to be introduced) Determinants: Determinant of a matrix of order 2 and 3, elementary properties of determinants, solving a system of linear equations (up to 3 variables) using Crammer's rule and application to medicines, pharmaceuticals, food and vitamins.		
Derivatives: Definition by first principle method, rules addition, subtraction, multiplication, division (only statements), and its applications. Approximation and errors: Rolle's theorem, Lagrange's mean value theorem, Extreme values using first and second derivatives (application type problem) First order differential equations: Review of separable differential equations, homogenous and non- homogenous differential equation. Linear differential equations and Bernoulli differential equations. Second order linear differential equations: The general second order differential equations, existence and uniqueness, theorem for the solutions of a second order initial value problem (statement only) Emphasis should be on solving problems with different rules.		15

Reference Books:

- 1. S. Lang Linear Algebra
- 2. Schaum's outlines on matrices
- 3. Simmons, G.F., Differential Equations with Applications and Historical Notes,
- 4. Chapter1, Sections 1,2,3 of Elements of Partial Differential, McGraw Hill
- 5. Serge Lang, Introduction to Linear Algebra, Springer Verlag,
- **6.** Balaguruswamy, E., Discrete Mathematics and Its Applications, Numerical Methods, Tata McGraw Hill

Subject IV- Computational Sciences RUSBAS.E114

Course Title: Statistics I

Academic Year 2024-25

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	110.0
CO 1	Understand Types of Data and Data Condensation and visualization
CO 2	Differentiate between measures of dispersion and measures of central
	tendency and apply the correct measure(s) of dispersion.

Paper Code	Semester II	Credits/ Hours
RUSBAS.E114	Statistics I	nours
		2/30
204. Types of I	Data and Data Condensation	15
1		
Concept of Popula	ation and Sample. Finite, Infinite Population, Notion of SRS,	
SRSWOR and SRS	•	
	of scales: Nominal, Ordinal, Interval and Ratio.	
	Collection: i) Primary data: concept of a Questionnaire and	
a Schedule, ii) Sec	ondary Data	
Types of data ։ Qւ	nalitative and Quantitative Data; Time Series Data and Cross	
	rete and Continuous Data Tabulation	
	ssification- for two and three attributes, Verification for	
consistency		
	attributes: Yule's coefficient of association Q. Yule's	
	gation Y, Relation between Q and Y (with proof).	
_	ency distribution of discrete and continuous variables.	
Cumulative freque		
	ion: Graphs and Diagrams, Histogram, Polygon/curve,	
•	e Frequency Distribution of discrete and continuous	
variables		
	of Central Tendency & Measures of Dispersion	15
2		
Concent of centr	al tendency of data, Requirements of good measures of	
central tendency.	ar terraency of data, requirements of good measures of	
_	ers: Median, Quartiles, Deciles, and Percentiles	

Mathematical averages Arithmetic mean (Simple, weighted mean, combined mean), Geometric mean, Harmonic mean, Mode, Trimmed mean.

Empirical relation between mean, median and mode:

Merits and demerits of using different measures & their applicability.

Concept of dispersion, Requirements of good measures of dispersion.

Absolute and Relative measures of dispersion: Range, Quartile Deviation, Inter Quartile Range, Mean absolute deviation, Standard deviation.

Concept of Skewness and Kurtosis

Box Plot: Outliers

Reference Books:

Statistics I	• Biostatistics: A foundation for analysis in Health Sciences,
	Wayne. W. Daniel
	Methods in Biostatistics, B.K. Mahajan