Resolution No: AC/II(23-24).2.RUS1

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for:

Program: Integrated M.Sc. in Bioanalytical Sciences

(F.Y.B.Sc. Syllabus)

Program Code: RUSBAS

As Per Guidelines of National Education Policy 2020 – Academic Year 2024-25

(Choice Based Credit System)

ann

GRADUATE ATTRIBUTES

GA	GA Description					
	A student completing Bachelor's Degree in Science program will					
	be able to:					
GA 1	Recall and explain acquired scientific knowledge in a comprehensive					
	manner and apply the skills acquired in their chosen discipline.					
	Interpret scientific ideas and relate its interconnectedness to various					
	fields in science.					
GA 2	Evaluate scientific ideas critically, analyse problems, explore					
	options for practical demonstrations, illustrate work plans and					
	execute them, organise data and draw inferences.					
GA 3	Explore and evaluate digital information and use it for knowledge					
un s	upgradation. Apply relevant information so gathered for analysis					
	and communication using appropriate digital tools.					
GA 4	Ask relevant questions, understand scientific relevance,					
	hypothesize a scientific problem, construct and execute a project					
	plan and analyse results.					
GA 5	Take complex challenges, work responsibly and independently, as					
	well as in cohesion with a team for completion of a task.					
	Communicate effectively, convincingly and in an articulate manner.					
GA 6	Apply scientific information with sensitivity to values of different					
à	cultural groups. Disseminate scientific knowledge effectively for					
	upliftment of the society.					
GA 7	Follow ethical practices at work place and be unbiased and critical in					
0.02	interpretation of scientific data. Understand the environmental					
K	issues and explore sustainable solutions for it.					
GA 8	Keep abreast with current scientific developments in the specific					
	discipline and adapt to technological advancements for better					
	application of scientific knowledge as a lifelong learner.					

PROGRAM OUTCOMES

РО	Description					
	A student completing Bachelor's Degree in Science program in the subject of Bioanalytical Sciences will be able to:					
PO 1	This course will impart high quality science education in a vibrant academic ambience with the faculty of distinguished teachers and scientists.					
PO 2	It will also equip students for the future who will take up the challenge of doing quality research & teaching and also contribute to industrial production and R & D in the fields of Bioanalysis, Bioinformatics and Nutraceutical Sciences.					
PO 3	It will amalgamate classical analytical chemical techniques with modern genomic and proteomic technologies of manufacturing and analysis to better characterize the products useful as medicines as well as nutraceuticals.					

2

Ramarain Ruia

Resolution No: AC/II(23-24).2.RUS1

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Integrated M.Sc. in Bioanalytical Sciences

Program For:

(FYBSC Syllabus) Program Code: RUSBAS

As Per Guidelines of National Education Policy 2020 - Academic Year 2024-25

(Choice Based Credit System)

Subject I: Bioanalytical Sciences RUSBAS.0101 Course Title: Biodiversity and Bioprospecting Academic Year 2024-25

F.Y.B.Sc.

COURSE	DESCRIPTION								
OUTCOME									
	c O'								
CO 1 Explain the importance of plant diversity, various metabolic functions									
and with plant bioprospecting.									
CO 2 describe the significance of plant and animal anatomy study, different mo									
	organisms for in-vivo studies and the functions of specialized cells present them.								
CO 3	elaborate on the basic concepts of microbiology, and apply the significance.								
CO 4	Perform aseptic transfer techniques & microbial bioprospecting.								
	~ O ^y								
Rann	arain Ruia Au								

Paper Code	Semester I	lectures
RUSBAS.0101	Biodiversity and Bioprospecting	45
101.1 Microbial	Diversity & Bioprospecting	15
Types of Microorg	anisms- Bacteria, Viruses, Protozoa, Algae, Fungi	
Significance and So	cope of Microbiology,	
Significance of <i>E. c</i>	oli, Yeast & Neurospora crassa as type specimens	
Microbial prospec	0	
• •	ations of microorganisms with suitable examples:	
	dustry: Vaccine production, Antibiotic production (any one	0
	d Dairy Industries.	
	croorganisms in sustainable development	
	rsity & Bioprospecting	15
Plant Diversity & (
Cultivation of plan		
	Biochemical processes in plants - seed germination and	
	orage compounds in plants	
	cations and plant bioprospecting	
	versity & Bioprospecting	15
Animal diversity, c		
Animal bioprospec		
	drug research: Significance of Zebra Fish, Mice, Guinea Pig, Non- Ethical considerations for use of animals in research.	
Research involving		
	g numan subjects	
RUSBASP.0101	PRACTICALS	
1. Study of storag	e compounds from microorganisms and plants	
	mples for antibiotic producers/pesticide degraders	
U	analysis of betalains.	
	imation of Vitamin C	
5. Extraction from	n oils from plant and animal sources.	
	-	
eference Books:		

- 1. Micheal J. Pelczar, Jr., E.C.S.Chan, Noel R. Krieg Microbiology
- 2. B.R. Vashishta, A K Sinha, Adarsh, Botany for Degree Students Part III: Bryophyta
- 3. B. P. Pandey, Plant Anatomy, S Chand Gerald Karp, Cell Biology
- 4. David Hopkin Lewis, Storage Carbohydrates in Vascular Plants: Distribution, Physiology, and Metabolism
- 5. David Nelson, Michael Cox:Lehninger's Principle of Biochemistry: Springer
- 6. S. Mukherji and A. K. Ghosh, Plant Physiology, New Central Book Agency (P) Ltd
- 7. Russell; Hunter, W.D. and McMillan: Life of Invertebrates
- 8. Kotpal, R.L.: Zoology Phylum Arthropoda, Rastogi Publication

Subject II- Chemical Sciences RUSBAS.0102

Course Title: Organic Chemistry I

Academic Year 2024-25

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION				
CO 1	Analyse & identify the organic molecules and draw their structures.				
CO 2	Explain with a suitable diagram of stereochemical structures of organic compounds.				
CO 3	differentiate between different types of organic reactions according to their mechanism.				

()

Paper Code	Paper Code Semester I				
RUSBAS.0102	RUSBAS.0102 Organic Chemistry I				
102.1 IUPAC Nom	102.1 IUPAC Nomenclature and Aromaticity				
groups, aliphatic the basis of IUPA	IUPAC : Rules of IUPAC nomenclature, IUPAC nomenclature of basic functional groups, aliphatic poly functional compounds, including monocyclic compounds on the basis of IUPAC priority order. (Line formulae expected) IUPAC nomenclature of Spiro, Biphenyls, Bicyclic compounds.				
-	racteristic properties of aromatic compounds, Huckel's rule, anti-aromaticity, Resonance energy,				
Aromatic hydrocarbons: Benzenoid & Nonbenzenoid compounds (benzene, naphthalene, anthracene, phenanthrene, cyclopropenium, cyclopentadienyl, cycloheptatrieniumcation)					
102.2 Stereoche	mistry	15			
Optical and Geometrical isomers: Study of enantiomers, diastereoisomers, Geometrical isomerism due to restricted rotation around C-C double bond and Substituted cycloalkanes					
Idea of configuration. Stereochemistry of carbon compounds with one and two similar and dissimilar asymmetric carbon atoms: enantiomers, diastereomers, and					
racemic mixtures and their properties, threo, erythro and mesoisomers. Representation of configuration by 'flying wedge formula' and projection formulate- Fischer, Newman and Sawhorse & interconversion of formula.					
 Conformational analysis of ethane, propane, n-butane. Molecular chirality and element of symmetry: Plane of Symmetry, Centre of 					
Symmetry, Alternating axis of symmetry. Chirality without asymmetric carbon					

 Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim 	Saller Contractor Saller Contractor	
for assigning absolute configuration(R&S) to a stereogenic center. Substitution reactions- SN1, SN2, SNi (reaction of alcohol with thionyl chloride). E2-anti-elimination-Base induced dehydrohalogenation of 1-bromo-1,2- diphenylpropane. Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with OsO4 and KMnO4. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- 4. SMILES notation of organic compounds- 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid	Conformations of cyclohexane and their relative stabilities.	
 Substitution reactions- SN1, SN2, SNi (reaction of alcohol with thionyl chloride). E2-anti-elimination-Base induced dehydrohalogenation of 1-bromo-1,2-diphenylpropane. Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0s04 and KMn04. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	Assigning stereo descriptors to chiral centres: Cahn-Ingold-Prelog(CIP),Rules	
 E2-anti-elimination-Base induced dehydrohalogenation of 1-bromo-1,2-diphenylpropane. Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0sO4 and KMnO4. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds - acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid 	for assigning absolute configuration(R&S) to a stereogenic center.	
 E2-anti-elimination-Base induced dehydrohalogenation of 1-bromo-1,2-diphenylpropane. Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0sO4 and KMnO4. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds - acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid 	Substitution reactions- SN1, SN2, SNi (reaction of alcohol with thionyl chloride).	
diphenylpropane. Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0s04 and KMn04. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid		
Addition reactions to olefins-i) Catalytic hydrogenation ii) Bromination (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with OsO4 and KMnO4. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid	,	
 (electrophilic anti addition) iii)Synhydroxylation (molecular addition) with 0s04 and KMn04. 102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds - acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
and KMnO4. 102.3 Fundamentals of Organic Reactions Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid		
102.3 Fundamentals of Organic Reactions 15 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, 15 General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. 16 Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. 17 Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid		, 0,
 Electronic effects in organic molecules: Polarization or Inductive effect Nature and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Gornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		15
and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid		C
 Tautomerism, General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	Electronic effects in organic molecules: Polarization or Inductive effect Nature	
 General Idea of types of reaction: Introduction and few examples of following types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	and polarity of a covalent bond, ionic bond dipole moment, Hyperconjugation and	
 types of reaction expected: Addition, Elimination, Substitution, Condensation, Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Study of organic structures using models Identification of organic compounds- Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	Tautomerism,	
 Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	General Idea of types of reaction: Introduction and few examples of following	
 Rearrangement, Pericyclic reactions, Oxidation-reduction. Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	types of reaction expected: Addition, Elimination, Substitution, Condensation,	
 Homolysis & Heterolysis, Concepts of intermediate, carbocation, carbanion and free radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
radicals. Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid		
 Mechanism and applications of Pinacol-Pinacolone rearrangement, Lossen rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
 condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction. RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. 2. Study of organic structures using models 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid	rearrangement, Knoevenagel condensation, Reimer-Teimann reaction, Aldol	
RUSBASP.0102 PRACTICALS 1. Stoichiometric calculations. . 2. Study of organic structures using models . 3. Identification of organic compounds- acid, base, neutral, phenol 4. SMILES notation of organic compounds 5. Synthesis of Dibenzylidene acetone (condensation) 6. Nitration of salicylic acid	condensation, Baeyer-Villiger Oxidation, Beckmann rearrangement, Corey-Kim	
 Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	Oxidation, Cornforth rearrangement, Favorskii rearrangement, Luche Reduction.	
 Stoichiometric calculations. Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 	RUSBASP.0102 PRACTICALS	
 Study of organic structures using models Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
 Identification of organic compounds- acid, base, neutral, phenol SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
 SMILES notation of organic compounds Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
 Synthesis of Dibenzylidene acetone (condensation) Nitration of salicylic acid 		
6. Nitration of salicylic acid		
•		
7. Treparation of suitable derivates from organic compounds meetyr sancyne Acid.		1

- 1. Morrison AND Boyyd: Organic chemistry: Allyn &Baconp publication
- 2. Richard O.C. Norman, James M. Coxon: Principles of Organic Synthesis, 3rd Edition: CRC Press
- 3. Peter Sykes: A Guidebook to Mechanism in Organic Chemistry:6 Edition: Pearson
- 4. P.S Kalsi: Organic Reactions and Their Mechanisms: Third Edition, New Age
- 5. Ira N. Levine: Physical Chemistry: McGraw-Hill

Subject III- Pharmaceutical Sciences RUSBAS.0103

Course Title: Human Anatomy & Physiology

Academic Year 2024-25

F.Y.B.Sc.

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Describe the organization of human body, body fluids system, and skin.
CO 2	Elaborate on the organization of human nervous, cardiovascular, and digestive system.
CO 3	Explain the organization of human respiratory, endocrine, and urinary system.

0

Paper Code	Semester I	lectures			
-					
RUSBAS.0103	Human Anatomy & Physiology	45			
	systems: Integumentary system, Body Fluids, Blood and Lymphatic				
emphasis on cell m	ues, and organs, Structure and functions of cell, with special embrane, classification of tissues, introduction to cell signalling o sapiens sapiens as type specimen				
	sition and functions of blood, blood cells, hemopoeisis, gulation, blood grouping, Rh factors, Reticulo endothelial system, atic system				
Structure and funct	ions of skin				
103.2 Organ System	ems: Nervous, Cardiovascular & Digestive	15			
neuron, neuroglia,	us system, Origin and functions of spinal and cranial nerves, classification and properties of nerve fiber, electrophysiology, erve impulse, receptors, synapse, neurotransmitters.				
Overview of cardiac and circulatory system, elements of conduction system of heart and heartbeat, its regulation by autonomic nervous system, cardiac output, cardiac cycle. Regulation of blood pressure, pulse, disorders of heart.					
production throug	tive system, Acid production in the stomach, regulation of acid h parasympathetic nervous system, functions of salivary glands, digestion and absorption of nutrients.				

103.3 Organ Systems: Respiratory, Endocrine and Urinary	15
Overview of respiratory system, mechanism of respiration, endocrine, and urinary	
system.	
Overview of urinary system, physiology of urine formation, role of kidneys in acid	
base balance, role of RAS in kidney	
Classification of hormones, mechanism of hormone action, structure and functions	
of hypothalamus, pituitary gland, thyroid gland, parathyroid gland, adrenal gland,	, 0,
pancreas,	0
RUSBASP.0103 PRACTICALS	
1. Analysis of Urine	
2. Bleeding time, clotting time	
3. Microscopic examination of blood components	
4. Blood grouping	
5. Separation of plasma from blood	
6. Study of striated muscles	
7. Study of amylase from saliva	
8. Understanding Human pathological reports (CBC, liver profile).	

Reference Books:

amarah

- 1. Chatterjee, C.C., Human Physiology. Medical Allied Agency, Kolkata.
- 2. Ganong, W.F., Review of Medical Physiology. Prentice-Hall International, London.
- 3. Guyton, A.C., Textbook of Medical Physiology. W. B. Saunders Co., Philadelphia, USA.
- 4. Tortora, G.J. and Grabowski, S.R., 2005. Principals of Anatomy and Physiology. Harper Collins College Publishers, New York.
- 5. Vander, A.J., Sherman, J.H. and Luciano, D.S., Human Physiology. McGraw-Hill Publishing Co., USA.

Sr. No.	Number of Credits	Total Marks	Internal Assessm ent (Marks)		Semester End Examination (Marks)	Semester End Examination (Pattern)	Duration of Sem End Exam
1.	3	75	30	a)1 Class Test of 20 Marks b)1 Assignment of 10 Marks	45	Three Questions of 15 Marks each	1 Hr 30 Mins
2.	2	50	20	Class Test/Assignment/ Open Book Test	30	Two Questions of 15 marks each/Three Questions of 10 Marks each	1 Hr
3.	1 (Practical)	25	NA	NA	25	Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	45 Minutes
					utor		
				Ruia			
			310				
	Ran	n°.					
	4						

2

Semester II

Subject I: Bioanalytical Sciences RUSBAS.E111

Course Title: Physiology & Biochemistry

Academic Year 2024-25

F.Y.B.Sc.

OUTCOME	DESCRIPTION
CO 1	Explaining the efficient way on how cells perform their biological functions while strictly obeying the laws of thermodynamics.
CO 2	Calculating the entropy, enthalpy, and free energy change for biochemical reactions
CO3	Demonstrate metabolic pathways in a sequential manner.
CO4	Learn about the metabolic pathways with the perspective of their applications i drug design.
Ram	iat

Paper Code	Semester II	Lectures			
RUSBAS.E111 Physiology & Biochemistry 45					
	emical basis of Life, Introduction to Biomolecules, Enzymes &	15			
Introduction to Enzymes: Chem enzyme activity Mechanism of energy, energy of mechanism; Enz Enzyme inhibito	biomolecules, types of biomolecules and their physiological roles, ical nature, properties, nomenclature, classification, units of katal specific activity. mzyme action: concept of active site, activation energy, binding diagram for enzyme catalysed reactions, lock & key Vs induced fit zyme kinetics: Michaelis-Menton equation, Lineweaver-Burk plot ors: Equations & Graphs, Allosteric enzymes, Types of catalysis: ent, metal ion, Overview of Coenzyme types with suitable	600			
Concept of cata Concept of Gib standard free thermodynamic Glycolysis, Kr Glycogenesis, G 111.3 Metal	ergetics, Metabolism of Carbohydrates bolism, anabolism & metabolism. bs free energy, enthalpy, entropy, free energy change (2G) and energy change (2G'0) with suitable examples, Laws of cs with suitable examples. ebs Cycle, Pentose Phosphate Pathway, Gluconeogenesis, lycogenolysis, Metabolic disorders bolism of Lipids, Proteins and Nucleic Acids m & Metabolic Disorders	15 15			
	etabolism: Synthesis of Purines & Pyrimidines (<i>De novo &</i> y), Catabolism of Purines & Pyrimidines				
Amino Acid: Sy	nthesis of Amino acids, Urea Cycle				
RUSBASP.E111	PRACTICALS				
 Enzymolog a) Extracti b) Determic c) Optimiz d) Determic e) Effect of 3. Extraction a 4. Application a demonstration 5. Estimation 	on of amylase from starch using buffers. ination of optimum pH, temperature ation of substrate and enzyme concentration ination of Km value f inhibitor(s) and immobilization of Invertase from yeast. of enzyme in diagnostics (Example of glucose oxidase kit, Glucome	ter			

 Physiology & Robert Copeland : Enzyme: 2nd edition: Wiley publication William. P. Jencks: Catalysis in Chemistry and Enzymology : Courier Dover Publications Tim Bugg: Introduction to Enzyme and Coenzyme Chemistry : 2nd Edition :Blackwill publication David Nelson, Michael Cox : Lehninger's Principle of Biochemistry : Springer Buns, G. W.: Science of Genetics - An introduction to heredity, Macmillan, New York. William S. Kluge and Cummings, M.R.:Concepts of Genetics, Pearson Edu. Alberts, Bruce: Essentials of Cell Biology: 5th edition. David Hopkin Lewis, Storage Carbohydrates in Vascul Plants:Distribution, Physiology, and Metabolism U. Satyanarayana, U. Chakrapani - Biochemistry Micheal M. Cox and David L. Nelson, Lehninger Principles of Biochemistry 	
Biochemistry	 William .P. Jencks: Catalysis in Chemistry and Enzymology : Courier Dover Publications Tim Bugg: Introduction to Enzyme and Coenzyme Chemistry : 2nd Edition :Blackwill publication David Nelson, Michael Cox : Lehninger's Principle of Biochemistry : Springer Buns, G. W.: Science of Genetics - An introduction to heredity, Macmillan, New York. William S. Kluge and Cummings, M.R.:Concepts of Genetics, Pearson Edu. Alberts, Bruce: Essentials of Cell Biology: 5th edition. David Hopkin Lewis, Storage Carbohydrates in Vascular Plants:Distribution, Physiology, and Metabolism U. Satyanarayana, U. Chakrapani – Biochemistry Micheal M. Cox and David L. Nelson, Lehninger Principles of
atain Ruia Ac	 U. Satyanarayana, U. Chakrapani – Biochemistry Micheal M. Cox and David L. Nelson, Lehninger Principles of
	atain Ruia Ac

Subject II- RUSBAS.E112

Course Title: Basic Chemistry

Academic Year 2024-25

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION				
CO 1	Elaborate on the nature, synthesis and reactions of heterocyclic compounds.				
CO 2	Learn about the basics of Stoichiometry and Preparation of Standard Solutions,				
	Titrimetric analysis.				
CO 3	Solving problems based on chemical kinetics and thermodynamics				

Paper Code Semester II							
Paper Code	Paper Code Semester II						
RUSBAS.E112 Basic Chemistry							
112.1 Heterocycl	ic Compounds	15					
Introduction:							
Electronic structur	e and aromaticity of furan, pyrrole, thiophene and pyridine.						
	sis of furans, pyrroles, and thiophenes by Paal-Knor synthesis. sch synthesis and from 1,5-diketones.						
Reactivity towards thiophene on basis	electrophilic substitution reactions-of furan, pyrrole and of stability of intermediate; and of pyridine on the basis of on. Nucleophilic substitution reaction of pyridine on the basis ation.						
Reactions of hete	r ocycles: The following reactions of furan, pyrrole and nation , Nitration, Sulphonation, Vilsmeir						
formylation reaction	n, Friedel-Crafts reaction.						
Pyrrole : Acidity an pyrrolidine, Acid	reaction. Ring opening of furan. nd basicity of pyrrole -Comparison of basicity of pyrrole and catalyzed polymerization of pyrrole. Pyridine: Basicity. icity of pyridine, pyrrole and piperidine.						
	etry and Preparation of Standard Solutions, Titrimetric analysis	15					
mole fraction, dilut concentration unit Primary and secon	sing concentration of solutions-molarity, normality, molality, ion of solutions, interconversion between different s, concept of milliequivalents, millimols, ppm and ppb dary standards, Preparation of standard solutions, Calculation commercial samples of acids and bases, Use of computers in ns.						

Safer e contorne fact	
Requirements for a reaction to be used in titrimetric analysis, classification of titrimetric analysis, Terms: titration, titrand, titrant, titre value, indicator, endpoint, equivalence point, titration error. Principles of acid-base, oxidation-reduction, and complexometric titrations. Theory of acid base indicators, choice of an indicator for the titration, dependence on the pH at the equivalence point. Acid-base, redox and metal-ion indicators Acid-base Titrations: Construction of titration curves and choice of indicators in the titration of Strong acid and strong base, Strong acid and weak base Precipitation titrations: Argentimetric titrations, construction of the titration curve, Volhard's method, Mohr's method. 112.3 Chemical Kinetics and Chemical Thermodynamics Chemical Kinetics: Rate of reaction, definition of rate constant, measurement of reaction rates, order and molecularity, integrated rate equations for zero, first and second order reactions (for second order reactions, pseudo first order reactions. Chemical Thermodynamics Transition state theory, Transition State-Activation energy, Measurement of Activation energy, Reaction profile diagram, the rate determining Step, Hammond's postulate, Principle of microscopic reversibility, Kinetics Vs. thermodynamic control.	15
RUSBASP.E112 PRACTICALS 1. Chemical Kinetics & Chemical Thermodynamics: To determine the rate of acid hymethyl acetate and determination of order by graphical method. 2. Gravimetric Estimation of mixture of BaSO4 and NH4Cl 3. Estimation of Sodium chloride I. P. by precipitation titration 4. Volumetric analysis (Calculation of % error expected) a) Acid – Base titration b) Estimation of Iron using Internal Indicator c) Estimation of iodine in iodised common salt using iodometry.	ydrolysis of

Basic	Dand Harvey: Modern Analytical Chemistry: Mc Grow Hill Publishers
Chemistry	Hobart.H.Williard, Lyne.L.Merrit, John.A.Dean, Frank.A.Settle.Jr. :
	Instrumental Methods of Analysis: CBS Publisher.
	• David Harvey: Modern Analytical Chemistry : Mc Grow Hill Publishers

	 Peter Atkins & Julio de Paulo: Physical Chemistry: Oxford Univer Press Ira N. Levine: Physical Chemistry: McGraw-Hill 	-
L		
	. C	>,
	0)
	$c O^{\gamma}$	
	×OY	
	atia Automonio	
	arain	
~		
02		
Y		

Subject III- Pharmaceutical Sciences RUSBAS.E113

Course Title: Pharmaceutics

Academic Year 2024-25

F.Y.B.Sc.

COURSE OUTCOME	DESCRIPTION
CO 1	Explaining the basics of different dosage forms, pharmaceutical incompatibilities, and pharmaceutical calculations
CO 2	Learning the basics of Pharmaceutical Manufacturing, Packaging and Quality Assurance

Paper Code	Semester II	Lectures					
RUSBAS.E113 Pharmaceutics							
Definition of a drug on therapeutic acti Nomenclature of dr Definition of the for Half-life efficiency, Brief idea of the Potency, Bioavailat Drugs, Adulterated Routes of drug adm Introduction to Dr	g, Requirements of an ideal drug, Classification of drugs (based on) rugs: Generic name, Brand name, Systematic name llowing medicinal terms: Pharmacon, Pharmacophore, Prodrug, LD50, ED50, Therapeutic Index. following terms: Receptors, Drug-receptor interaction, Drug bility, Drug toxicity, Drug addiction, Spurious Drugs, Misbranded Drugs, Pharmacopoeia. ninistration with advantages and disadvantages rug Discovery, Design and Development, Discovery of a Lead ing, drug metabolism studies and clinical observation	15					
-	rms Classifications and Definitions	15					
U I	ninistration with advantages and disadvantages fferent dosage forms (emphasis on sustained release						
 113.3 Overview Assurance Overview of Pharm 2. Importance of So 3. Regulatory requi 4. Unit operations 	of Pharmaceutical Manufacturing, Packaging and Quality haceutical manufacturing shedule M (D& C) in pharmaceutical manufacturing process frements in pharmaceutical manufacturing process and advances in: Manufacturing of oral solid dosage forms, oral s, sterile injectables and topical dosage forms	15					

RUSBASP.E113 Practicals on Pharmaceutics

- 1. Demonstration of preparation of tablet using a tablet maker
- 2. Study of different dosage forms and packaging material (Case study)
- 3. Study of Indian Pharmacopeia and pharmacopoeia monograph
- 4. Assay of the Sodium benzoate I. P. by non-aqueous titration
- 5. Assay of the Hydrogen peroxide I. P./B. P. by Permanganometry
- 6. Visit to a pharmaceutical manufacturing facility/ QA lab

Pharmaceutics	1. H.C. Ansel et al., Pharmaceutical Dosage Form and Drug Delivery System,
	Lippincott Williams and Walkins, New Delhi.
	2. Carter S.J., Cooper and Gunn's-Dispensing for Pharmaceutical Students, CBS
	publishers, New Delhi.
	3. Carter S.J., Cooper and Gunn's. Tutorial Pharmacy, CBS Publications, New
	Delhi.
	4. E.A. Rawlins, Bentley's Text Book of Pharmaceutics, English Language Book
	Society, Elsevier Health Sciences, USA.
	5. Alfonso R. Gennaro Remington. The Science and Practice of Pharmacy
	6. Lippincott Williams, New Delhi. 8. Carter S.J., Cooper and Gunn's. Tutorial
	Pharmacy, CBS Publications, New Delhi
	arainpuint

				cy 01110000001110			
Sr. No.	Number of Credits	Total Marks	Internal Assessm ent (Marks)		Semester End Examination (Marks)	Semester End Examination (Pattern)	Duration of Sem End Exam
1.	3	75	30	a)1 Class Test of 20 Marks b)1 Assignment of 10 Marks	45	Three Questions of 15 Marks each	1 Hr 30 Mins
2.	2	50	20	Class Test/Assignment/ Open Book Test	30	Two Questions of 15 marks each/Three Questions of 10 Marks each	1 Hr
3.	1 (Practical)	25	NA	NA	25	Required Experiments Performed with appropriate principle, approach, Observations, Result, Demonstration of skills, Conclusion and Viva.	45 Minutes
					ton		
				15:	J.C.		
				Bar			
		Ŕ	31	7			
	Ran	100					
	4						

Modality of Assessment for: F.Y.B.Sc. Semester II