S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: UG Biotechnology

Program Code: RUSBTK

(Credit Based Semester and Grading System for Academic Year 2024–2025)

GRADUATE ATTRIBUTES

GA	Description
	A student completing Bachelor's Degree in Science program will be able
	to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner and apply the skills acquired in their chosen discipline. Interpret scientific ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for practical demonstrations, illustrate work plans and execute them, organise data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge upgradation. Apply relevant information so gathered for analysis and communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently, as well as in cohesion with a team for completion of a task. Communicate effectively, convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge effectively for upliftment of the society.
GA 7	Follow ethical practices at work place and be unbiased and critical in interpretation of scientific data. Understand the environmental issues and explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline and adapt to technological advancements for better application of scientific knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in Science program in
	the subject of Biotechnology will be able to:
PO 1	Adept in basic sciences along with a thorough understanding of
	biotechnology principles and chemical sciences to create a foundation
	for higher education with the insights into interdisciplinary approach.
PO 2	Demonstrate the applications of fundamental biological processes
	from the molecular, cellular, industrial and environmental perspective.
PO 3	Develop effective communication skills with improved individual
	and team work abilities in the domain of scientific research writing.
	Showcase their innovative ideas and research work efficiently.
PO 4	Reflect, analyse and interpret information or data for investigating the
	problem in fields of biotechnology. Acquire scientific and entrepreneur
	skills to furnish sustainable solutions to coeval problems
PO 5	Illustrate the relevance of ethical implications and standard laboratory
	practices in tissue culture techniques, forensic biology, developmental
	biology and other fields of biotechnology.
PO 6	Apply the conceptual knowledge to develop coherent, efficacious
	and proficient practical, technical and analytical skills.

PROGRAMME OUTLINE

YEA R	SEMESTE R	PAP ER	COURS E CODE	COURSE TITLE	CREDIT S
EX/D		DSC	RUSBTK.O10 1	Biotechnology I- Fundamentals of biotechnology	A
FYB Sc		DSC	RUSBTKP.O1 01	Practicals based on Biotechnology I- (Fundamentals of biotechnology)	1
I	Ι	DSC	RUSBTK.O10 2	Fundamentals of chemistry for biotechnology	3
		DSC	RUSBTKP.O1 01	Practicals based on Fundamentals of chemistry for biotechnology	1
		OE	RUSOEBTK. O101	Fitness - I	3
		OE	RUSOEBTKP .O101	Practicals based on Fitness - I	1
	R	VSC	RUSVSCBTK P.O101	Marine Biotechnology	2
. [N	SEC	RUSSECBTKP. O101	Microscopy and microbial techniques	2
<i>S</i> [×]	П	DSC	RUSBTK.E111	Biotechnology II- Fundamentals of genetics	3
FYB		DSC	RUSBTKP.E11 1	Practical of Biotechnology- II	1
Sc		DSC	RUSBTK.E11 2	Bioorganic chemistry	3
Ι		DSC	RUSBTKP.E1 12	Practical of subject 2	1

		OE	RUSOEBTK. E111	Fitness - II	3
		OE	RUSOEBTKP .E111	Practicals based on Fitness - II	1
		VSC	RUSVSCBTK P.E111	Techniques in forensic science	2
		SEC	RUSSECBTK P.E111	Techniques in tissue culture	2
l				-0 ¹	

SEMESTER I

Course code: RUSBTK.O101

Course Title: BIOTECHNOLOGY I -FUNDAMENTALS OF BIOTECHNOLOGY

Academic year 2024-25

COURSE OUTCOMES:

COURS	DESCRIPTION
E OUTCO ME	
CO 1	Enlist and explain the different areas covered in the field of biotechnology and describe their applications.
CO 2	Outline, distinguish and analyse different industrial biotechnological processes and comment on enrichment and screening processes of Industrially Important Strains.
CO 3	Identify, enlist and describe different types, parts, structure, functions and applications of Fermenter.
CO 4	Define immunology and explain its basic concepts.
CO 5	Identify and summarise different components of the immune system . Comment on its structure, function, types and significance.
CO 6	Examine food samples for various adulterants.

Course	Un	Course/ Unit Title	Lectur
Code	it		e s
	Ι	Introduction to biotechnology	15

	 History & Introduction to Biotechnology What is Biotechnology? Definition of Biotechnology, Traditional and Modern Biotechnology, Branches of Biotechnology-Plant, Animal Biotechnology, Marine Biotechnology, Agriculture, Healthcare, Industrial Biotechnology, Pharmaceutical Biotechnology, Environmental , Food biotechnology Biotechnology. Biotechnology Research in India. Biotechnology Institutions in India (Public and Private Sector) Biotech Success Stories 	, CF
	Biotech Policy Initiatives Biotechnology in context of Developing World Public Perception of Biotechnology	
II	 Introduction to industrial biotechnology Microorganisms in Industrial Processes Types of Microorganisms used in Industrial Processes: Bacteria, Fungi, Design of a fermenter: Stirred Tank Fermenter, Air lift, Pneumatic, Tower fermenter, - Basic Design; Parts of a Typical Industrial Fermenter. Process Parameters: pH, Temperature, Aeration, Agitation, Foam, Pressure, Inlet and exit gas analysis, Dissolved oxygen. Carbon dioxide electrodes, microbial biomass, Safety valves. 	15
	Immunology Overview of Immune Systems, Innate Immunity, Acquired Immunity, Local and Herd Immunity,Cell and Organs involved in Humoral and Cellular Immunity - Factors Influencing and Mechanisms of each.	15

Course Code: RUSBTKP.0101

Course Title: Practicals based on Biotechnology I- (Fundamentals of biotechnology)

DETAILED SYLLABUS

Course Code	Course/ Unit Title	Credit s
Code RUSBTK P.O101	 Working and use of various instruments used in biotechnology laboratories (Autoclave, Hot air Oven, Centrifuge, Water bath, Incubator and Rotary Shaker, colorimeter (study of beer lambert's law)) Microbial examination of food and Isolation of organisms causing Food Spoilage. Isolation of microorganisms from milk, curd, probiotics, idli batter. Analysis of Milk by using MBRT,RRT and Phosphatase Test Study of food adulterants Qualitative estimation of antioxidant activity of food Screening for Alcohol producer yeast Lab Scale Production of Ethanol. Estimation of Alcohol by Dichromate Method and sugar by 	
<	ferricyanide method. 10. Determination of MIC for sugar and alcohol.	

References:

- 1. Biotechnology Expanding Horizons; B. D. Singh; B. Sc. Edition Kalyani Publishers.
- 2. Introduction to Biotechnology; Thieman and Palladino; 3rd edition; Pearson.
- 3. Industrial Microbiology- A. H. Patel
- 4. Industrial Microbiology- L. E. Casida- John Wiley & Sons
- Kuby immunology, Judy Owen, Jenni Punt, Sharon Stranford., 7th edition (2012), Freeman and Co., NY
- 6. Textbook of basic and clinical immunology, 1st edition (2013), Sudha Gangal and ShubhangiSontakke, University Press, India
- 7. Immunology, 7th edition (2006), David Male, Jonathan Brostoff, David Roth, Ivan Roitt, Mosby,USA

8. Introduction to Immunology- C V Rao- Narosa Publishing House

SEMESTER II Course Code: RUSBTK.E111 Course Title : BiotechnologyII - Fundamentals of Genetics Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOM E	CO DESCRIPTION
CO 1	Elaborate the molecular mechanism of DNA replication in prokaryotes and eukaryotes.
CO 2	Assess mechanism of DNA recombination using Holliday model
CO 3	Elaborate the concepts of Mendelian genetics and the patterns of breeding and crossbreeding
CO 4	Interpret the unusual patterns of inheritance and deviations from the Mendelian laws.
CO 5	Explain different mechanisms of horizontal gene transfer in prokaryotes.
CO6	Relate the effect of population study and its impact on the entire ecosystem.
C07	Deduce the formation of heterochromatin and Euchromatin and apply diverse techniques to examine the chromosomes.
CO8	Analyse genetic linkage in eukaryotes using mapping techniques and study human genetic inheritance using pedigree analysis.
CO9	Analyse structural and numerical chromosomal abnormalities.
2411	

Course Code	Un it	Course/ Unit Title	Lectur e s
	т	Replication	15
	I	DNA Replication in Prokaryotes and Eukaryotes- Semi-conservative DNA replication, DNA Polymerases and its role, <i>E.coli</i> Chromosome Replication, Bidirectional Replication of Circular DNA molecules. Rolling Circle Replication, DNA Replication in Eukaryotes DNA Recombination Holliday Model for Recombination, Transformation	
			15
	II	Mendel's Principle in Human Genetics. Incomplete Dominance and Codominance. Multiple Alleles.Allelic series. Variations among the effects of the Mutation. Genotype and Phenotype. Environmental effect on the expression of the Human Genes. Gene Interaction. Epistasis Population Genetics Genetic Structure of Populations. Genotypic Frequencies and Allelic Frequencies, Hardy- Weinberg Law and its assumptions Genetic Variations in Populations- Measuring Genetic Variations at DNA level Natural Selection. Genetics in Conservation Biology	15
	тт	Microbial and cytogenetics	15
M'		Microbial Genetics	
8An		Genetic analysis in Bacteria- Prototrophs, Auxotrophs. Bacteriophages: Lytic and Lysogenic Development of Phage. Mechanism of Genetic Exchange in Bacteria: Conjugation; Transformation; Transduction; (Generalised Transduction, Specialized Transduction) Bacterial Transposable Elements.	
		Cytogenetics: Structure of Chromosome- Heterochromatin, Euchromatin, Polytene Chromosomes. Variation in Chromosomal Structure	

 and Number: Deletion, Duplication, Inversion, Translocation, Aneuploidy, Euploidy and Polyploidy and Syndromes- Klinefelter, Turner, Cri-du-chat, Trisomy -21, Trisomy 18 and Trisomy 13. Sex Determination and Sex Linkage: Mechanism of Sex Determination (XX-XY, ZZ-ZW, XX-XO) Dosage Compensation and Barr Body. Genetic Linkage, Crossing Over and Chromosomal Mapping: Tetrad Analysis, Two-point Cross, ThreePoint Cross, Pedigree Analysis
Compensation and Barr Body. Genetic Linkage, Crossing Over and Chromosomal Mapping: Tetrad Analysis, Two-point Cross, ThreePoint Cross, Pedigree Analysis
Pedigree Analysis

Course Code: RUSBTKP.E111

Course Title:Practicals based on Biotechnology -II (Fundamentals of genetics) DETAILED SYLLABUS

Course Code	Course/ Unit Title	Credit s
RUSBTKP	1. Problems in mendelian genetics	$\sim 6^{\times}$
E111	2. Study of Mitosis and Meiosis	
	3. Study of Interactions Commensalism,	
	Mutualism, Predation and Antibiosis, Parasitism.	
	4. Isolation of plasmid from bacteria.and its	
	detection using AGE	
	5. Isolation of genomic DNA from bacteria.and its	
	detection using AGE	
	6. Isolation of genomic DNA from yeast.and its	
	detection using AGE	
	7. Isolation of genomic DNA from plant.and its	
	detection using AGE	
	8. Study of Abnormal Karyotyping (Chromosomal	
	Aberration) - Deletion, Duplication, Inversion,	
	Translocation and Syndromes- Trisomy 21,	
	Trisomy 13, Trisomy 18, Klinefelter, Turner and	
	Cri-du-Chat. (By usage of Software)	
Ja.	9. Demonstration of G- banding	
	10. Induction of Polyploidy by PDB/ Colchicine/ UV	
An.	Treatment Using Suitable Plant material	
25	11. Study of Polytene Chromosomes	
	12. Mapping based on Tetrad Analysis and Three	
	Point Cross.	
	13. Pedigree Analysis- Autosomal and Sex- Linked	

Course Code: RUSBTK.0102

Course Title: FUNDAMENTALS OF CHEMISTRY FOR BIOTECHNOLOGY Academic year 2024-25

COURSE OUTCOMES:

COURS E OUTCO	DESCRIPTION
ME	
CO 1	Calculate and prepare the strengths of solutions using mass based and volume- based units of expressing concentration.
CO 2	Differentiate between primary standards and secondary standards.
CO 3	Comprehend the characteristics of liquid state, its physical properties, concept of viscosity, surface tension and its determination methods.
CO 4	Develop the skills for determination of rate ,order and molecularity of reactions.
CO 5	Balance redox reactions using oxidation number method and ion electron method.
CO 6	Calculate equivalent weight of oxidising and reducing agents.
AL,	DETAILED SYLLABUS

Course Code	Unit	Course/ Unit Title	Lecture s
	Ι	Chemical Calculations Chemical calculations:	15
		Mole concept, relation with molar mass, conversion of amount into mole and vice versa, relation with the number of particles present. Amount and concentration, volume-based units for concentration, molarity, normality, formality, mass- based unit for concentration - molality and mole	

		fraction, ppm and ppb, concept of millimoles and milliequivalents Problem solving based on various concentration units, Stoichiometry and calculations based on it, concept of limiting reactant and yield for a chemical reaction. Calculations based on stoichiometry. Primary standards, properties of primary standards, primary standards for different types of titrations, secondary standards, standardization, standard solutions.	
		Chemistry of water	
		Water as a natural resource: Physical and Chemical properties of water, significance of water as a universal solvent and its properties viz. pH, Dielectric constant, boiling point. Anomalous behavior of water.Hydrological cycle. Chemical composition of groundwater. Factors affecting solubility of gases in water. Solubility of CO2 and O2 in water. Water quality: Parameters for determining water quality i) Physical parameters: - pH, pE, conductivity, TS, TSS, TDS ii) Chemical Parameters- acidity, alkalinity, hardness, salinity, chlorine demand, DO, COD, iii) Biological parameter – BOD, MPN Standards for Potable and industrial water	
		2	
			15
RAMMA	П	Chemical Kinetics: Rate of a reaction, rate constant and measurement of reaction rates. Order and molecularity of reaction. Integrated rate equation for zero, first and second order reactions (with equal and unequal initial concentration of the reactants). Kinetic characteristics of zero, first and second order reactions. Numerical problems based on zero, first and second order reactions.Methods for the determination of the order of a reaction (a) Integration method (b) Graphical method (c) Half time method (d) Ostwald's isolation method (e) differential method. Liquid State Introduction to liquid state,characteristics of liquid state, physical properties of the liquids, Determination of surface tension by drop number method using stalagmometer. Surface	
		solutes and surface tension, applications of surface tension measurement. Viscosity: Introduction, coefficient of viscosity. Determination	

	III	of coefficient of viscosity by Ostwald viscometer. Applications of viscosity measurement Oxidation Reduction Chemistry Oxidation Reduction Chemistry, Oxidation state, oxidation number, oxidation- reduction in terms of oxidation number. Balancing redox equations by i) oxidation number method and ii) ion- electron method Calculation of equivalent weight on the basis of chemical nature. Study of, oxides of carbon, sulphur and nitrogen with respect to their Environmental impact	15
Runn		RUMAUTONOMOUS	

Course Code: RUSBTKP.0102

Course Title: Practicals based on FUNDAMENTALS OF CHEMISTRY FOR BIOTECHNOLOGY DETAILED SYLLABUS

	Course Code	Course/ Unit Title	
	RUSBTKP .O102	 Safety measures and Practices in the Chemistry laboratory, including Good Lab Practices. Preparation of a solution of a primary standard for acid base titrations: (any one of following) 	1
		 a. Determination of the strength of the supplied sodium hydroxide solution, using solution of a primary standard for acid base titration. 	
		b. Determination of the strength of a sample of supplied commercial hydrochloric acid.3. Use of Secondary standards: Determination of the strength of the	
		supplied sodium thiosulphate solution. Further, determination of the strength of the supplied iodine solution using the sodium thiosulphate solution of known strength.	
		4. Determination of the rate constant of a reaction: To determine the rate constant of the acid catalysed hydrolysis of methyl acetate.5. Concept of assay of a component in a sample: (any1)	
5		 a. Assay of acetic acid in a commercial sample of vinegar. b. Determination of the individual amounts of sodium carbonate and sodium bicarbonate in a commercial mixture of the two 	
		 6. Mass based analysis of a given mixture: (any 1) a. To determine the percentage composition of a mixture of barium sulphate and ammonium chloride 	
		 b. To determine the percentage composition of a mixture of zinc oxide and zinc carbonate. 7. To determine the valence factor of KMNO₄ by titrating with 	

oxalic acid.	

Course Code: RUSBTK.E112

Course Title : Bioorganic chemistry

Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION Discuss the structure and role of lipids and carbohydrates			
CO 1				
CO 2	Classify the different types of proteins depending on their level of complexity			
CO3	Determine the structure and sequence of proteins using different analytic techniques			
CO 4	Identify the molecules responsible for making up the genetic material of an organism			
CO 5	Distinguish between the molecular and conformational arrangement of DNA and RNA			
CO 6	Evaluate the conjugal role of biomolecules inside cells and perform suitable tests to detect their presence in clinically significant samples			
CO 7	Elucidate the interdependence of different biomolecules on each other			

Course	Un	Course/ Unit Title	Lectur
Code	it		e s
	Ι	Carbohydrates: Structure, Function, Classification, Characteristic	15

	Reactions, Physical and Chemical Properties, D & L Glyceraldehydes, Structure of Monosaccharide, Disaccharides and Polysaccharides. Isomers of Monosaccharides, Chemical/Physical Properties of Carbohydrate, Chemical Reactions for Detection of Mono., Di and Polysaccharides, Lipids : Classification of Lipids, Properties of Saturated, Unsaturated Fatty Acids, Rancidity and Hydrogenation of Oils Phospholipids: Lecithin Cephalin, Plasmalogen Triacylglycerol-Structure and Function Sterols: Cholesterol: Structure and Function, Lipoproteins: Structure and Function, Storage Lipids, Structural Lipids, Action of Phospholipases, Steroids	
II	Proteins and Amino Acids Proteins and Amino Acids: Amino acids: Structure, Properties, Classification, Reaction of amino acids Peptides- Formation of peptide bond Protein- Structure, Classification, Properties, Functions, Primary structure determination, Sequencing of polypeptides, Primary, Secondary, Tertiary, Quaternary Structure, Protein denaturation	15
III	Nucleic Acids: Structure, Function of Nucleic Acids, Properties and Types of DNA, RNA. Structure of Purine and Purimiding Passes Hydrogen Bonding between	15
8	Nitrogenous Bases in DNA Differences between DNA and RNA, Structure of Nucleosides, Nucleotides and Polynucleotides.	
	Vitamins	
	Sources , activity , functions, deficiency disorder, Overconsumption of vitamin - water soluble - B complex , C Fat soluble- A, D,E,K	
	II	Reactions, Physical and Chemical Properties, D & L Glyceraldehydes, Structure of Monosaccharide, Disaccharides and Polysaccharides. Isomers of Monosaccharides, Chemical/Physical Properties of Carbohydrate, Chemical Reactions for Detection of Mono., Di and Polysaccharides, Lipids: Classification of Lipids, Properties of Saturated, Unsaturated Fatty Acids, Rancidity and Hydrogenation of Oils Phospholipids: Lecithin Cephalin, Plasmalogen Triacylglycerol-Structure and Function Sterols: Cholesterol: Structure and Function, Lipoproteins: Structure and Function, Storage Lipids, Structural Lipids, Action of Phospholipiases, SteroidsIIProteins and Amino Acids Proteins and Amino Acids: Amino acids: Structure, Properties, Classification, Reaction of amino acids Peptides- Formation of peptide bond Protein- Structure, Classification, Properties, Functions, Primary structure determination, Sequencing of polypeptides, Primary, Secondary, Tertiary, Quaternary Structure, Protein denaturationIIINucleic Acids: Structure, Function of Nucleic Acids, Properties and Types of DNA, RNA. Structure of Purine and Pyrimidine Bases Hydrogen Bonding between Nitrogenous Bases in DNA Differences between DNA and RNA, Structure of Nucleosides, Nucleotides and Polynucleotides.Vitamins Sources, activity, functions, deficiency disorder, Overconsumption of vitamin - water soluble - B complex, C Fat soluble - A, D,E,K

Course Code: RUSBTKP.E112

Course Title: Practicals based on subject -II

Course Code	Course/ Unit Title	Credit s
	1. Detection of carbohydrates using a molisch test.	1
RUSBTKP F1	2. Detection of carbohydrates using the Iodine test.	1
12	3. Detection of carbohydrates using Benedict's test.	
	4. Detection of carbohydrates using bial's test.	
	5. Detection of carbohydrates using Fehling's test.	
	6. Estimation of sugar using DNSA method	
	7. Qualitative estimation of lipids.	
	8. Estimation of proteins by Folin Lowry method	
	9. Paper Chromatography of Amino acids	
	10. Estimation of protein using bradford's method	
	11. Native PAGE	
	12. Estimation of vitamin by DCPIP	
	13. Quantitative analysis of DNA by DPA/ RNA by	
	Orcinol method	
RAIN		

MODALITY OF ASSESSMENT

DSC

Theory Examination Pattern

Internal assessment -40%- 30 Marks

Sr.No	Evaluation Type	Marks
1	One Assignment (Animations/Presentations/Posters/ Video Making/ Skits/ Written assignments)	10
2	One class Test (multiple choice questions or objective & one sentence)	20
	Total Marks	30

B) External examination - 60 %: 45 marks

Semester End Theory Assessment - 45 marks

I. Duration - These examinations shall be of 1 hour and 30 mins duration.

II. Paper Pattern:

1. There shall be 03 questions each of 15 marks. On each unit there will be one question.

All questions shall be compulsory with internal choice within the questions.

2. 60% options will be provided

Questions	Options	Marks	Questions from
Q1	Objectives (1M each) any 3 out of 4 Brief Answer(4M each) any 3 out of 4	3 12	Unit 1
Q2	Objectives (1M each) any 3 out of 4 Brief Answer(4M each) any 3 out of 4	3 12	Unit 2
Q3	Objectives (1M each) any 3 out of 4 Brief Answer(4M each) any 3 out of 4	3 12	Unit 3

Practical Examination Pattern:

(Semester end practical examination): 50 Marks

PARTICULARS	MARKS
Lab work	40
Journal	5
Viva	5
TOTAL	50