S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: BSc

Program Code: RUSBCH

Credit Based Semester and Grading System for the academic year 2023-24

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
	Interpret scientific ideas and relate its interconnectedness to various
	fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options
	for practical demonstrations, illustrate work plans and execute them,
	organise data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
,	communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize
	a scientific problem, construct and execute a project plan and
	analyse results.
GA 5	Take complex challenges, work responsibly and independently, as
	well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different
	cultural groups. Disseminate scientific knowledge effectively for
	upliftment of the society.
GA 7	Follow ethical practices at workplace and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues
	and explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in SCIENCE program
	in the subject of BIOCHEMISTRY will be able to:
PO 1	Achieve better understanding of the major thrust areas of the
	disciplines like Chemistry of Biomolecules & their metabolism, Cell
	biology (Basics, Membrane biochemistry, Cancer), Enzymology,
	Genetics, Plant Biochemistry, Pharmacology, Microbiology &
	Immunology.
PO 2	Gain acumen of the fundamental biochemical processes occurring
	at the molecular and gene level.
PO 3	Understand the role of Biochemistry in food, human nutrition and
	environmental science.
PO 4	Get insights into multiple important analytical tools for Biochemical
,	testing and apply contextual knowledge and tools of biochemical
	research for problems solving.
PO 5	Acquire and empower technical knowledge by connecting
	disciplinary and interdisciplinary aspects of biochemistry.
PO 6	Compile and interpret Biological data using Biostatistics and
	Bioinformatics tools.
PO 7	Express ideas persuasively through scientific writing and oral
	presentation which will help in the development of the leadership
	qualities.
PO 8	Possess scientific temperament by research project-based
	learning.
PO 9	Procure hands-on real time experience in industries.
PO 10	Get exposure to the strong theoretical and practical understanding
	of various dimensions of Biochemistry and take up research-
	oriented courses in the fields of Biochemistry, Nutrition & Dietetics,
	Molecular Biology, etc.

PROGRAM OUTLINE

YEAR	SEM	CORE	COURSE TITLE	CREDITS
		COURSE		
		RUSBCH501	Membrane Biochemistry & Cancer Biology	2.5
		RUSBCH502	Introduction to Pharmacology & Basics of Immunology	2.5
		RUSBCH503	Molecular Biology	2.5
	V	RUSBCH504	Biostatistics & Bioinformatics	2.5
		RUSBCHP501	Practicals based on RUSBCH501	1.5
		RUSBCHP502	Practicals based on RUSBCH502	1.5
		RUSBCHP503	Practicals based on RUSBCH503	1.5
TYBSc		RUSBCHP504	Practicals based on RUSBCH504	1.5
			Human Physiology	2.5
		RUSBCH602	Food Biochemistry & Environmental Science	2.5
		RUSBCH603	Clinical Biochemistry	2.5
	VI	RUSBCH604	Nutritional Biochemistry	2.5
	VI	RUSBCHP601	Project Work / Certificate Courses	1.5
		RUSBCHP602	Practicals based on RUSBCH602	1.5
		RUSBCHP603	Practicals based on RUSBCH603	1.5
		RUSBCHP604	Practicals based on RUSBCH604	1.5

Course Title: Membrane Biochemistry & Cancer Biology

Academic year 2023-24

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Outline the importance of carbohydrates, lipids, and proteins as a
	structural component of biomembranes.
CO 2	Summarize the composition and structure of biomembranes,
	transport mechanisms across biological membranes.
CO 3	Illustrate the mechanism of oxidative phosphorylation,
	photophosphorylation and basic concept of Bioenergetics
CO 4	Recall the concept and mechanism of ATP synthesis.
CO 5	Classify different types of transporters.
CO 6	Explain the factors that contribute to cancer development, discuss
	cancer prevention and currently available therapeutic treatments.
CO 7	Develop an understanding on various genetic and molecular changes
	which takes place during transformation into malignant cells.
CO 8	Make use of theoretical concepts of Membrane Biochemistry &
	Cancer Biology and develop experimental acumen.

Credits/
Lectures
r Biology 2.5 Credits
15L
2L
3L
ids, sterols
heral 8L
Lipid-
A on RBC
hored
rane 2L
nsport 15L
cross cell 4L
ar & Non
iffusion of
ated, 4L
2L
porter
2L
otides by
3L
ocytes,
ation 15L
2L
of Gibb's 3L
ree energy
4L
on
)
esis 4L
model &

	3.4	Inhibitors & Uncouplers of ETC and ATP synthesis	2L
	4	Cancer Biology & Apoptosis	15L
	4.1.1	Introduction to the biology of cancer	2L
	4.1.2	Difference between tumor and Cancer	
	4.2.1	Classification of tumor	2L
	4.2.2	Properties of cancer cells	
	4.3	Cell cycle regulators and cancer	1L
		Oncogene- Ras protein	2L
	4.4.2	Tumor suppressor gene- Role of P53, Comparison between functional & Non-Functional p53	
IV	4.5	Assays – Trypan blue exclusion method, MTT assay, Soft Agar Colony Formation Assay	2L
	4.6	Cancer therapy -	2L
	4.6.1	Chemotherapy (purine & pyrimidine analog)	
	4.6.2	Demethlyating agents	
	4.7	Apoptosis –	2L
		Properties of apoptotic cells	
		Difference between apoptosis and Necrosis	
	4.7.3	Role of caspases in apoptosis	
	4.7.4	Mechanism (Intrinsic & Extrinsic pathway)	2L
		Practicals – RUSBCHP501	1.5 Credits
	1	Osmosis across semi-permeable membrane	
	2	Effect of temperature and molecular weight on	
	_	diffusion	
	3	Visualization of cells by Trypan blue	
_	4 5	Study of viability of cells using Neutral Red Assay	
	5	Mitochondrial respiration and effect of different Inhibitors for ETC (Dry lab)	
	6	In-vitro study of RBC membrane stabilization	
	7	Sums based on Bioenergetics	
	8	Internship / Workshop / Hands-on training (1 – 4	
13	3	weeks)	

- 1. Jain MK. Introduction to Biological membranes, John Wiley and sons New York, 1988
- 2. Vance DE & Vance JE, Biochemistry of lipids and Biomembranes, Benzamin Cummings 1985
- 3. Biomembranes by RB Gennis Springer Verlag 2012 2nd edition
- 4. Jones MN & Chapman D. Micelles monolayers and biomembranes Wiley-Lis New York, 1995
- 5. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 6. Weinberg RA. The Biology of Cancer, Second Edition, NewYork: GarlandScience, 2013.
- 7. Ruddon RW. Cancer Biology, fourth edition, Oxford University Press, USA.
- 8. Biochemistry by Voet & Voet, International student version
- 9. Lehninger's Principles of Biochemistry by David L. Nelson
- 10. Introductory Practical Biochemistry by Sawhney
- 11. Practical Biochemistry by David Plummer

- 12. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 13. Principles of Genetics by D. Peter Snustad, Michael J. Simmons
- 14. Concepts of Genetics by William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian
- 15. Molecular Biology of Cancer Mechanisms, Targets, and Therapeutics by Lauren Pecorino

Course Title: Introduction to Pharmacology & Basics of Immunology

Academic year 2023-24

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Outline the basics of pharmacology like scope & general principles
CO 2	Summarize the process of Drug Receptor Interaction
CO 3	Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion
CO 4	Design bioassays to meet regulatory requirements
CO 5	Develop an understanding of the characteristics and the nature of antigen – antibody reactions
CO 6	Justify the role of immune cells and their mechanism in body defence system
CO 7	Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated
CO 8	Recall different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western Blotting, etc.
CO 9	Make use of theoretical concepts of immunology and pharmacology and develop experimental acumen.

Course Code/ Unit	Unit	Course/ Unit Title Introduction to Pharmacology & Basics of Immunology RUSBCH502	Credits/ Lectures 2.5 Credits
	1	Introduction to Pharmacology & Pharmacodynamics	15L
		Introduction to pharmacology	1L
		Drugs - Sources, Classification and Nomenclature	3L
		Pharmacodynamics and Basis of Drug Action	
1		Drug Receptor Interaction – Receptor Theory of Drug Action, Location of Drug Receptor-G-Coupled Protein receptors	4L
	1.4.2	Drug Acting on enzymes	2L
	1.4.3	Non receptor mechanism of drug action	
	1.4.4	Placebo effect	*
		Affinity and Intrinsic Activity	3L
		Intensity of Drug Response – Potency and Efficacy	
		Combined Effects of Drug – Synergism, Antagonism	2L
	_	Pharmacokinetics & Bioassay	15L
		Physicochemical properties of drugs	1L
		Routes of drug administration	3L
II		Drug absorption: through-GIT, pulmonary, renal, placental and blood-brain barrier	3L
11	2.3.2	Bioavailability and Bioequivalence	1L
		Drug Distribution	
		Drug Metabolism and Excretion	2L
		Factors affecting drug dosage and drug delivery	2L
		Bioassay – Preclinical & clinical studies	3L
		Introduction to Immunology	15L
	3.1.1	Innate immunity – Anatomical barriers, physiological	4L
		barriers, phagocytic/endocytic barriers, Inflammatory barriers	
	3.1.2	Adaptive immunity – Active & Passive	
		Cells of the immune system:	4L
		Lymphocytes – B cells and T cells, Natural killer cells	
III		 Mononuclear phagocytes, Granulocytes, Antigen presenting cells 	
	3.3	Organs of the immune system	4L
		Primary lymphoid organs: Thymus, Bone marrow	
		Secondary lymphoid organs: Lymphatic system, Lymph nodes, Spleen, MALT	
	3.4	Immune responses - Humoral & Cell mediated response	3L

	4	Antigens and antibodies	15L
	4.1	Antigens: Antigenecity, immunogenecity, epitope,	3L
		factors determining immunogenecity, Haptens,	
		adjuvants	
	4.2	Antibodies	5L
	4.2.1	Tiselius & Kabat Experiment, Porter & Edelman	
		Experiment	
	4.2.2	Fine structure of immunoglobulin	
	4.2.3	Antibody classes and biological activities	
IV	4.2.4	Antigenic determinants on immunoglobulins, B-cell	
l V		receptor	
	4.3	Antigen- Antibody interactions: Forces involved,	2L
		antibody affinity, antibody avidity, Cross reactivity	
	4.3.1	Precipitation reactions – Oudins, Ouchterlony	2L
	4.3.2	Agglutination reactions: Blood typing, bacterial	3L
		agglutination, passive agglutination, agglutination	
		inhibition, Coomb's test	
	4.3.3	Immunoelectrophoresis: Principles of	
		Radioimmunoassay, ELISA, Immunofluorescence,	
		Western Blotting	
		Practicals – RUSBCHP502	1.5 Credits
	1	Monograph of a pharmaceutical drug	
	2	Problems based on drug dosage	
	3	Preparation of blood smear and Differential leucocyte count	
	4	Immunoprecipitation of antigen and antibody	
	5	Ouchterlony double immunodiffusion (DID)	
	6	Assays based on agglutination reactions – Blood	
		typing	
	7	Demonstration of Enzyme linked immunosorbent	
		assay (ELISA)	
13	8	WIDAL test – Qualitative & Quantitative	

- 1. Essentials of Pharmacotherapeutics by FSK Barar
- 2. Pharmacology and Pharmacotherapeutics by R.S. Satoskar, Nirmala N. Rege, S.D. Bhandarkar, Elsevier
- 3. Immunology by Goldsby and Kuby, W.H. Freeman Co.
- 4. Weir D.M., Immunology: Student's Notes, ELBS- Oxford.
- 5. Bowry T.R., Immunology Simplified, 2nd Ed., ELBS and Oxford.
- 6. Ivan, Immunology Method Manual, Vol. 4 1997, Academic Press, Sani Diego.
- 7. Roitt Ivan and others, Immunology, 6th Ed., Mosby, Edinburg.
- 8. Hood Leroy E., Immunology, 2nd Ed., 1976, Benjamin Cummings Publication
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Course Title: Molecular Biology

Academic year 2023-24

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Define the molecular events of DNA Replication, transcription, and
	translation process
CO 2	Enlist different types of repair mechanisms and explain their
	mechanisms
CO 3	Outline the principle of gene organization and the roles of promoters,
	coding, and termination sequences
CO 4	Compare and state differences in the transcription process occurring
	in prokaryotes and eukaryotes
CO 5	Discuss how gene expression is regulated at the post-transcriptional
	level
CO 6	Analyse the tools and techniques for construction of recombinant
	DNA, cloning vectors & genomic and cDNA library
CO 7	Recall the applications of RDT in various field
CO 8	Make use of theoretical concepts of molecular biology and develop
	experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code/		Molecular Biology	Lectures
Unit		RUSBCH503	2.5 Credits
	1	DNA Replication & Repair	15L
	1.1.1	Replication of DNA (in prokaryotes)	4L
	1.1.2	Modes of DNA replication: Theta & rolling circle	
	1.2	Enzymes (pol I, II and III) and accessory proteins	3L
	1.3	Mechanism of semi-conservative replication	3L
I		(Initiation, elongation & termination)	
	1.4	DNA repair Mechanisms	5L
	1.4.1	Direct repair (Photoreactivation, O ⁶ methyl guanine	
		DNA methyl transferase)	
	1.4.2	Excision repairs - base & nucleotide excision,	
		Mismatch repair (Hemimethylation of DNA)	
	2	Transcription & Post-transcriptional	15L
	0.4	Modifications	41
	2.1	Introduction to Transcription	1L
	2.2	Types of RNA & its function	2L
	2.3	Assembly for transcription-Template strand, RNA	
		polymerase Holoenzyme, Transcriptional unit,	
	2.4	Promoter Machanian of DNA transprintion in proken atom	21
	2.4	Mechanism of RNA transcription in prokaryotes: Initiation, elongation and termination	3L
	2.5	Significance of Sigma factor, Concept of Abortive	1L
	2.0	initiation	16
II	2.6	Comparative overview of transcription in prokaryotes	2L
		& eukaryotes	
	2.7	Inhibitors of transcription -Rifampicin, Actinomycin D	
	2.8.1	mRNA (Mechanism of formation of 5'-cap and poly A	1L
		tail),	
	2.8.2	Post-transcriptional modifications: Concept of introns,	2L
		exons, split genes and mechanism of mRNA splicing	
	2.8.3	Processing of tRNA, rRNA (arrangement of	1L
		prokaryotic rDNA)	
	2.9	Reverse transcription (Mechanism, significance &	2L
		application)	
`	3	Translation & Post-translational Modifications	15L
	3.1	Introduction to Translation (protein biosynthesis) in	1L
	0.0	prokaryotes	0.1
	3.2	Characteristics of Genetic code, tRNA synthetase	2L
III	3.3	Mechanism of translation: Activation of amino acids,	4L
	0.4	chain initiation, elongation & termination	01
	3.4	Inhibitors of prokaryotic translation (Puromycin,	2L
		Streptomycin, Tetracycline, Chloramphenicol,	
		Erythromycin)	

	3.5	Post translational modifications of proteins	2L
		(proteolytic cleavage, acylation, phosphorylation,	
		methylation, glycosylation)	
	3.6	Signal hypothesis	2L
	3.7	Concept of Protein sorting in cell organelles	2L
	4	Introduction to RDT & techniques of RDT	15L
	4.1	Introduction of RDT	3L
		Tools for RDT	
	4.2.1	Enzymes- Restriction endonucleases, ligases,	
		terminal transferases, reverse transcriptase	
	4.2.2	Cloning and Expression Vectors-	3L
		Plasmid, pBR 322, PUC-19	
		Bacteriophage – Lambda phage	
		Cosmid; Artificial Chromosomes (BAC and YAC)	
IV		Shuttle vectors	
IV	4.2.3	Probes- DNA probes	2L
	4.3	Applications of RDT- Agriculture (Bt Cotton);	
		Medicine (Insulin); GM food	
	4.4	Isolation of gene: Gene library and c-DNA library;	2L
		Southern blot; Northern blot	
	4.5	Gene Transfer: Transfection, Electroporation,	3L
		Microinjection, Liposome, Microprojectile (in brief)	
	4.6	Selection and screening- Antibiotic and colony	2L
		hybridization	
	4.7	DNA Amplification by PCR	
		Practicals – RUSBCHP503	1.5 Credits
	1	Extraction of total nucleic acids from plant tissue	
	2	Estimation of UV absorption of nucleic acids &	
		proteins	
	3	Study of viscosity of DNA solution	
	4	Estimation of DNA by the Diphenylamine method	
	5	Isolation of chromosomal DNA from <i>E coli</i> cells	
	6	Isolation of RNA from Yeast/ Liver	
	7	Estimation of RNA by Orcinol Method	

- 1. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 2. Tropp, B.E. Molecular Biology. Genes to Proteins.2011 (4th Ed.) Jones and Bartlett publications.
- 3. Freifelder, D. Essential of Molecular Biology, 1998 (3rd Ed.)
- 4. Lewin, B. Gene X, Jones & Bartlett, 2009
- 5. Molecular Cell Biology by James Dernell, Harvey Lodish and David Baltimore, W.H. Freeman & Co., 2007 (6th Ed.).
- 6. From Genes to Genomes by Bale J.W. & Schantz M. V. (2003).
- 7. Gene Biotechnology by Jogdand
- 8. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Course Title: Biostatistics & Bioinformatics

Academic year 2023-24

COURSE OUTCOME	DESCRIPTION
001001112	A student completing this course will be able to:
CO 1	Define the fundamental concepts in the design and analysis of
	medicinal studies, including difference between observational and
	experimental studies, the outcome measure of study, comparability of
	the control group or control population.
CO 2	Summarize the data relating to variables which can be examined and
	descriptive statistics can be calculated from the obtained data
CO 3	Translate the knowledge gained on types of data and tools of data
	collection in compiling and performing statistical analysis.
CO 4	Recall various biological databases that provide information about
	nucleic acid and proteins.
CO 5	Outline the data from key bioinformatics databases and resources.
CO 6	Explain the use of computational skills in the field of Biology
CO 7	Classify databases and explain the same.
CO 8	Make use of theoretical concepts of Biostatistics & Bioinformatics and
	develop experimental acumen.

Course Code/ Unit	Unit	Course/ Unit Title Biostatistics & Bioinformatics RUSBCH504	Credits/ Lectures 2.5 Credits
	1	Biostatistics & descriptive statistics	15L
	1.1	Introduction to Biostatistics	3L
	1.2	Descriptive statistics:	6L
I	1.2.1	Measures of central tendency - Mean, Median and mode	
	1.2.2	Measures of dispersion- Range, percentiles,	6L
		variance, SD, Mean deviation, Coefficient of variation	
	2	Test of Hypothesis I	15L
	2.1.1	Normal distribution and normal curve	5L
	2.1.2	Asymmetric distribution	
	2.1.3	Normal variate & its significance	
	2.1.4	Statistical problems based on the above concepts	
l II	2.2	Introduction to Hypothesis	5L
П	2.2.1	Concept of Level of Significance, Degrees of freedom, One-tailed and two tailed tests, Type I and Type II errors	
	2.2.2	Hypothesis testing of mean - Z-test, t-test (grouped and ungrouped data)	5L
	2.2.3	Statistical problems based on the above concepts	•
	3	Test of Hypothesis II	15L
	3.1.1	Introduction to Hypothesis testing of difference	5L
		between population means	
	3.1.2	Z-test, t-test (Paired and unpaired)	
Di.		Statistical problems based on the above concepts	
[JI	3.2	Tests based on Chi-square distribution	4L
	3.2.1	Test of population variance	
	3.2.2	Test of goodness of fit	3L
	3.2.3	Test of association - 2 x 2 Table	3L
	3.2.4	Statistical problems based on the above concepts	
	4	Bioinformatics	15L
	4.1	Introduction to Bioinformatics	1L
	4.2	Sequence & Nomenclature	2L
	4.2.1	IUPAC Symbol	
`	4.2.2	Nomenclature of DNA Sequences	
IV	4.2.3	Nomenclature of Protein Sequences	
		Directionality of sequences	
	4.3	Types of sequences used in bioinformatics- Genomic	2L
		DNA, cDNA, Organelle DNA, EST's, Gene	
		sequencing tag, STS & Biomolecules	
	4.4	Information sources in Bioinformatics	1L
		Genome database, Mouse genome database, Genebank	

4.5	Information retrieval from biological databases-	3L
	Entrez, Taxonomy browser, Locus link & Sequence	
	Retrieval Systems (SRS)	
4.6	Similarity based database searching tools- BLAST &	3L
	FASTA	
4.7	Resources for gene level sequence- Uni-gene	2L
	database, Homo-gene database & Refseq database	
4.8	Applications of informatics tools in Analysis-	1L
	Genomics and Proteomics	
	Practicals – RUSBCHP504	1.5 Credits
1	Descriptive statistics using Microsoft excel	
2	Hypothesis testing (one sample) – z-test, t-test	
3	Hypothesis testing – Two sample z-test, unpaired t- test	
4	Sequence retrieval (protein and gene) from NCBI	
	and Uniprot	
5	BLAST suite of tools for pairwise alignment	
6	Molecular Visualization Softwares: Rasmol for	
	protein structures from PDB	
7	Multiple sequence alignment (CLUSTALW / TCoffee)	
	and construction of phylogenetic trees	

- 1. Biostatistics by P. K. Malhan and P. N. Arora, Himalaya Publishing house
- 2. Methods of biostatistics for medical students and research workers by Mahajan, B.K.; Jaypee brothers publishers.
- 3. Bioinformatics- Concepts, Skill and applications by Rastogi, S.C.; Mendiratta, Namita and Rastogi, Parag; C.B.S. Publishers & Distributors
- 4. Principles of biostatistics, M. Pagano and K. Gauvreau (2000); Duxbury Thomas learnings
- 5. Essential Bioinformatics (2006), JinXiong, Cambridge University Press
- 6. Bioinformatics: Sequence and Genome Analysis (2001), 1st ed., Mount, D.W. Cold Spring Harbor Laborator Press (New York)
- 7. Bioinformatics and Functional Genomics (2003), 1st ed., Pevsner, J., John Wiley & Sons, Inc. (New Jersey)
- 8. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (2005), 3rd ed., Baxevanis, A.D. & Ouellette, B.F., John Wiley & Sons, Inc. (New Jersey)
- 9. Bioinformatics Principles and Applications (2008), 1st ed. Ghosh, Z. and Mallick, B.,Oxford University Press (India)
- 10. A Textbook of Biotechnology R.C. Dubey by S Chand Publication

Modality of Assessment (SEMESTER V)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 5	15	UNIT I
Q2.	Any 3 out of 5	15	UNIT II
Q3.	Any 3 out of 5	15	UNIT III
Q4.	Any 3 out of 5	15	UNIT IV
162,	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks Semester End Practical Examination:

Particulars	Practical I
Report (Internal)	10
Presentation & Viva (External)	10
Laboratory work	10
Total	30

Particulars	Practical II, III & IV
Laboratory work	25
Viva	05
Total	30

Overall Examination & Marks Distribution Pattern

Semester V

Course	501 502		501			Grand Total	
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	503			5	04		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Title: Human Physiology

Academic year 2023-24

COURSE	
	DECODIDATION
OUTCOME	DESCRIPTION
	A student completing this course will be able to:
CO 1	Explain the organization and processes of the muscular system and
	describe its location, function & physiology of muscle contraction
CO 2	Identify the major functions, composition, and physiology of bone
CO 3	Outline the functions of physiological systems such as cardiac and
	reproductive and its related disorders.
CO 4	Recall the structure of the organs of the reproductive system in males
	and females.
CO 5	Name the cellular and molecular mechanisms in neurons. To
	comprehend established information about neurophysiology
CO 6	Summarize the organs of male and female reproductive system
	including structure its function & development and maturation in
	emergence of secondary characteristics
CO 7	Apply knowledge of research culture at under-graduate level, to know
	the concept of research its objectives, tools and importance and
	techniques of documentation.
CO 8	Make use of theoretical concepts of human physiology and develop
	experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code/		Human Physiology	Lectures
Unit		RUSBCH601	2.5 Credits
	1	Musculoskeletal system	15L
	1.1	Bone physiology	2L
		Function and Composition of bone	
	1.1.2	Structural considerations-structure of bone; cells of bone	1L
	1.1.3	Physiological considerations- Bone growth, Bone	3L
	1.1.4	formation, bone resorption; Bone remodelling	2L
I	1.1.4	Metabolic Bone diseases- Rickets, Osteomalacia; Osteoporosis	ZL
	1.2	Muscle Physiology	2L
		Types of muscle cells- Skeletal, Cardiac; Smooth	26
	1.2.1	muscle (Structure; Comparison)	
	1.2.2	Structure of skeletal muscle, Muscle proteins-	3L
		Structural proteins (Actin; Myosin) & Cross-linking	
		proteins (Tropomyosin; Troponin)	
	1.2.3	Molecular theory of muscle contraction	2L
	2	Cardiac Physiology and related disorders	15L
		Structure of the heart	3L
		Layers of the heart wall	•
		Chambers and valves of the heart	
		Physiology of the cardiac muscle	2L
	2.3	Conducting system of heart, comparative rates of	3L
ll ll		conduction system of heart	
	2.4	Heart sound, heart rate and factors influencing heart rate	2L
	2.5	Cardiac cycle and effect of heart rate on cardiac cycle	2L
	2.6	Cardiac output	1L
	2.7	Hypertension, congestive heart disease, myocardial	2L
	2.7	infarction, cardiac arrhythmias	26
	3	Neurophysiology	15L
	3.1.1	Nervous system - Overview, Classification	3L
		Neuron – Structure, classification based on structure	
		and function	
	3.1.3	Glial cells, formation of myelin sheath	2L
	3.1.4	Concept of myelinated and unmyelinated neuron	
III		Resting membrane potential of a neuron	2L
	3.2.2	Processes – Depolarization, repolarization,	
		hyperpolarization	
	3.3	Generation of nerve impulse	2L
	3.4	Saltatory conduction of impulse, All-or-none principle	1L
		Neuromuscular junction	2L
	3.5.2	Action of Acetylcholine at chemical synapse	

	252	Democrat of each detailment of the state of the state of	
	3.5.3	Removal of acetylcholine after its action and regeneration	
	3.6	Excitatory and inhibitory neurotransmitter pair in	2L
		brain and spinal cord	
	3.7	Catecholamines as neurotransmitter	1L
	4	Reproductive system	15L
	4.1	Male reproductive system: scrotum, testes,	3L
		reproductive system ducts of in males, accessory sex	
		glands	
	4.2	Female reproductive system: Ovaries, uterine tubes,	3L
n.,	4.0	uterus, vagina, vulva, perineum, mammary glands	
IV	4.3	The female reproductive cycle: Hormonal regulation	3L
		of the female reproductive cycle, phases of the	
	4.4	female reproductive cycle	21
	4.4	Birth control measures; abortion: Surgical	3L
	4.5	sterilization, hormonal methods, abortion Development of the reproductive systems	3L
	4.5	Aging; reproductive systems	JL
		Practicals – RUSBCHP601:	1.5 Credits
		PROJECT WORK / Certificate Courses	5100110
			>
		Guideline to Carry Out Project work	
		1. The main purpose of introduction of Project Work at	
		TYBSc is to inculcate research culture at under-	
	\	graduation level. It will also make the students	•
		familiar with Research Methodology i.e. reference	
		work, experimental work, analysis of experimental	
		data, interpretation of results obtained, writing of	
		project work and compilation of bibliography in	
		proper order. 2. Each student individually or in a group shall	
13		complete a small research project during their	
	_	academic year of TYBSc. However, the initial	
		reference work for the project can be started after	
		the conclusion of SYBSc Semester IV examination	
		and summer vacation to TYBSc.	
		3. Nature of Research Project:- Experimental-based	
		involving laboratory analytical work will be	
		considered as the Research Project.	
		Duration of Project work:- Using the infrastructure	
		available in the Biochemistry Department,	
		Ramnarain Ruia Autonomous College, the duration	
		to complete the project work will be from the commencement of the project work till the mid of	
		January of TYBSc (Sem V) academic year.	
		5. Schedule for Submission of project Work:-	
		Experimental work must be completed and the	
		report on the same (2 Copies) will have to be	
		submitted by the end of January of TYBSc (Sem V)	
		academic year.	

- 5. The project should be divided into the following parts:
 - a) Certification of completion of Project Work
 - b) Acknowledgement
 - c) Introduction
 - d) Review of Related Literature
 - e) Aims and Objectives
 - f) Plan of work
 - g) Material and Methods
 - h) Results
 - i) Discussion
 - j) Bibliography
- 7. The project will be assessed

GUIDELINE FOR THE ASSESMENT OF PROJECT WORK

- The practical 601 of Sem VI (Course Code No. RUSBCHP601) shall be exclusively devoted for the project.
- Each student will complete the project (2 copies) and get both the copies certified by the guiding teacher and the Head of Dept. (HOD) by January of TYBSc (Sem V) academic year.
- One copy of the certified project will be submitted to the Department; while the other copy will be retained by the students for his/ her personal record.
- The candidate is required to present the Research Project to the examiner followed by Viva- Voce examination based on the project work by the examiner.

The following Marking Scheme shall be considered while assessing the project work

	Particular	Marks
a)	Project Work (Contents Submitted in the bound form)	30
b)	Presentation of Project Work to examiner	10
c)	Viva- voce Exam based on Project Work	10
	TOTAL	50

OR

Certificate Courses –

Students shall complete certificate courses available on MOOC / SWAYAM / NPTEL platforms / short-term certificate courses.

Contact hours – 30 to 45 hours

Student shall produce successful completion certificates made available at the end of the above mentioned courses.

A powerpoint presentation on the summary of the

A powerpoint presentation on the summary of the courses studied should be made and presented which will be assessed as follows –

	Particular	Marks
٥)	Successful completion of courses	30
a)	(30 to 45 contact hours)	30
b)	Presentation to external examiner	10
c)	Viva- voce	10
	TOTAL	50

- 1. Principles of Anatomy and Physiology: Gerard J, 12th edition, John Wiley & Sons.
- 2. Human Physiology Chatterjee. C.C, Medical Allied Agency
- 3. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York),
- 4. Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi).
- 5. Fundamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco),

Course Title: Food Biochemistry & Environmental Science

Academic year 2023-24

COURSE OUTCOME	DESCRIPTION	
OUTCOME		
	A student completing this course will be able to:	
CO 1	Summarize physical & chemical reactions in food, the role of	
	enzymes in food processing and how they aid in carrying out changes	
	in food	
CO 2	Outline the chemistry and applications of enzymes in food industries	
	and flavour.	
CO 3	Enlist the changes in reactions in food and how enzymes could be of	
	great importance in food processing	
CO 4	Recall the properties of different food components and to understand	
	the principle underlying the biochemical techniques used in food	
	analysis.	
CO 5	Explain the interdisciplinary nature of environmental studies and	
	create awareness for the same.	
CO 6	Demonstrate various methodologies that are adapted for effective	
	monitoring of environmental parameters.	
CO 7	Elaborate on the concept of water and waste water treatment	
	techniques and the aspects involved in solid waste minimization and	
	complete environmentally safe method of their disposal.	
CO 8	Make use of theoretical concepts of Food Biochemistry &	
	Environmental Science and develop experimental acumen.	

Course	Unit	Course/ Unit Title	Credits/
Code/		Food Biochemistry & Environmental	Lectures
Unit		Science	
		RUSBCH602	2.5 Credits
	1	Physicochemical Principles of food	15L
	1.1	Introduction & Importance	2L
		Physical & chemical characteristics of food	
		Factors affecting physicochemical properties	4L
		Enzymatic reactions- softening, Oxidation (Ascorbic	
		acid & Phenolic oxidation) Glycolytic reaction,	
		Hydrolytic reactions, pigmentation (Cholorophylase)	
		browning, Maillard reaction & Caramelization reaction	
		Chemical reactions-	4L
	1.2.2	Lipid oxidation, non-enzymatic browning	4L
		Colour changes - Chlorophylls - Anthocyanins -	
		Carotenoids (lipid soluble compounds)	
I		3. Flavour changes	
		4. Phenophytinisation -photo- oxidation Oxidation	
		Enzyme-induced oxidative breakdown of	
	\	unsaturated fatty acids	*
		Physicochemical changes in following food Changes	1L
		in fruit ripening	
	101	Comparison between Raw vs Ripe Fruit	21
	1.3.1	Changes in meat- Post Mortem Changes in Meat	3L
		(Pre-rigor stage, Rigor Mortis, Post Rigor Stage Lipid oxidation	
	1.3.2	Non enzymatic hydrolysis by Haeme protein Autolytic	1L
	1.0.2	enzyme spoilage	1-
	2	Enzymes in Food Processing	15L
X		Enzymes in carbohydrates, proteins and lipid	3L
		modifications	
	2.1.1	Enzymes for starch modification-	
		maltodextrins and corn syrup solids: liquefaction,	
		saccharification, dextrinization, isomerization for	
\		production of high-fructose-corn-syrup, fructose and	
		fructo-oligosaccharides	01
II		Enzymes for protein modification - hydrolysates and	3L
		bioactive peptides Enzymes for Lipid modification- Lipase catalyzed	3L
		synthesis of structured triglycerides, fats, and	JL
		margarine	
		Enzymes as processing aids	3L
		Role of enzymes in Dairy processing - cheese	-
		making and whey processing	
		Role of enzymes in meat processing- tenderization	

	0.00	and flavour development	
	2.2.3	Role of enzymes in fish processing- De-skinning,	
	2.2.4	collagen extraction	
	2.2.4	Role of enzymes in Egg processing- catalase,	
	0.0	glucose oxidase, hydrolase	21
		Role of enzymes in the production of flavours	3L
	2.3.1	Enzyme-aided extraction of plant materials for production of flavours	
	2.3.2	Production of flavour enhancers such as nucleotides,	
		MSG; flavours from hydrolyzed vegetable/animal	
		protein	
	3	Fundamentals of Environmental Chemistry	15L
	3.1	Air and Atmosphere	3L
	3.1.1	Particles, ions and radicals in the atmosphere	
	3.1.2	Chemical processes for formation of inorganic and	
		organic particulate matter	
	3.1.3	Thermochemical and photochemical reactions in the	2L
		atmosphere	
	3.1.4	Oxygen and ozone chemistry – Formation of ozone	
		layer, sources and effects of ozone depletion on	•
		environment	
		Chemistry of air pollutants	2L
		Photochemical smog, Carcinogens in the air	
III		Effects of air pollution on health	
		Water and aquatic system	2L
	3.2.1	Organic pollutants [pesticides, insecticides,	
	0.00	detergents, oil spills, toxic organic chemicals]	
		Inorganic pollutants [heavy metals – Hg, Pb, As, Cd]	01
		Thermal pollution of water	3L
	3.2.4	Concept of DO, BOD, COD, Acidity, Alkalinity, Hardness	
	325	Effects of water pollution on health	
	3.3	Soil	3L
	5.5	Soil properties, Types of soil pollution – acidification,	JL
		agrochemical pollution, salinization, and	
		contamination by metalliferous wastes	
	4	Environmental pollution management and	15L
	4.4	environmental monitoring	5 1
	4.1	Air Pollution Management	5L
	4.1.1	Control methods for particulates - Gravitational	
		Settling Chambers, Centrifugal collectors, Wet	
11/	440	collectors, Fabric Filters, Electro Static Precipitators	
IV	4.1.2	Control methods for gaseous pollutants - Adsorption, Absorption, Condensation, Combustion	
	4.2	Water analysis & Waste water management	5L
		Physico – chemical and Bacteriological sampling and	JL
	4.2.1	analysis of water quality	
	4.2.2	Primary treatment methods – screening, grit removal,	
	7.2.2	primary sedimentation	
		printary sodimonation	

4.2.3 Secondary treatment methods - Activated sludge process, Trickling filters, Rotating biological contactors, Oxidation ponds and Lagoons 4.2.4 Tertiary treatment methods - Chlorination, Ion Exchange 4.3 Solid Waste Management Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals - RUSBCHP602 1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	4.0.0		
contactors, Oxidation ponds and Lagoons 4.2.4 Tertiary treatment methods - Chlorination, Ion Exchange 4.3 Solid Waste Management Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals - RUSBCHP602 1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	4.2.3	,	
4.2.4 Tertiary treatment methods - Chlorination, Ion Exchange 4.3 Solid Waste Management Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals – RUSBCHP602 1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		process, Trickling filters, Rotating biological	
Exchange 4.3 Solid Waste Management Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals – RUSBCHP602 1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a 3 coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		contactors, Oxidation ponds and Lagoons	
4.3 Solid Waste Management Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals – RUSBCHP602 1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a 3 coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	4.2.4	Tertiary treatment methods - Chlorination, Ion	
Sanitary Landfill, Recycling, Composting, Incineration, Energy recovery options from organic wastes Practicals – RUSBCHP602 Determination of salinity / chlorides in water by Silver nitrate method Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Exchange	
Incineration, Energy recovery options from organic wastes Practicals – RUSBCHP602 Determination of salinity / chlorides in water by Silver nitrate method Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	4.3	Solid Waste Management	5L
Practicals – RUSBCHP602 Determination of salinity / chlorides in water by Silver nitrate method Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Determination of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Sanitary Landfill, Recycling, Composting,	
Practicals – RUSBCHP602 Determination of salinity / chlorides in water by Silver nitrate method Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Determination of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Incineration, Energy recovery options from organic	
1 Determination of salinity / chlorides in water by Silver nitrate method 2 Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a 3 coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		wastes	
nitrate method Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a Coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Practicals – RUSBCHP602	1.5 Credits
Determination of the Chemical Oxygen Demand of water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	1	Determination of salinity / chlorides in water by Silver	
water/ Effluent by the Potassium Dichromate method Determination of potability of water by conducting a 3 coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		nitrate method	
Determination of potability of water by conducting a coliform count Determination of the Alkalinity of water/ Effluent Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	2		
3 coliform count Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		water/ Effluent by the Potassium Dichromate method	
Determination of the Alkalinity of water/ Effluent 4 Determination of the Acidity of water/ Effluent 5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Determination of potability of water by conducting a	
Determination of the Acidity of water/ Effluent Estimation of lead by the EDTA method Estimation of Organic content of soil by Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	3	coliform count	
5 Estimation of lead by the EDTA method 6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue		Determination of the Alkalinity of water/ Effluent	
6 Estimation of Organic content of soil by 7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	4	Determination of the Acidity of water/ Effluent	
7 Diphenylamine method Estimation of CaCO3 of soil by Bromothymol Blue	5	Estimation of lead by the EDTA method	
Estimation of CaCO3 of soil by Bromothymol Blue	6	Estimation of Organic content of soil by	
	7		
		Estimation of CaCO3 of soil by Bromothymol Blue	
8 Method	8	Method	

- Total Quality Assurance for the Food Industries WA Gould & RW Gould. CTI Publications Inc., USA 1988
- 2. Current Good Manufacturing Practices for Food Plan Sanitation WA Gould, CTI Publications Inc. USA 1980
- 3. Enzymes in food and beverage processing by Muthusamy Chandrasekaran, CRC Press
- 4. Enzymes in Food Processing by Tilak Nagodawithana, Gerald Reed and Steve Taylor, Academic Press
- 5. Fundamental Concepts of Environmental Chemistry Sodhi, Narosa Publishing House, 2002
- 6. Principles of Environmental Chemistry Kothandaram & Swaminathan, B I Publishers, Chennai
- 7. Environmental Chemistry AK De, New Age International Publishers
- 8. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Course Title: Clinical Biochemistry

Academic year 2023-24

COURSE	DESCRIPTION
OUTCOME	DESCRIPTION
	A student completing this course will be able to:
CO 1	Outline the basics of circulatory system including Iron Metabolism,
	haematopoiesis, and Erythropoiesis
CO 2	Compare and state differences in hemochromatosis and anaemia
	from the perspective of iron homeostasis
CO 3	Define the composition of normal hemoglobin at various stages of
	development
CO 4	Explain the structural difference between different types of
	haemoglobin, compare O2 binding properties of haemoglobin,
	including haeme- haeme interactions
CO 5	Summarize Fundamentals, composition, and significance of Body
	fluids
CO 6	Elaborate on the chemical nature of hormones, the relationship
	between structure and function of hormones, quantitative aspects of
	hormonal action in relation to endocrine disorder, the role of
	hormones as a regulatory factor of a living system, relation with some
	diseases
CO 7	Discuss the clinical significance of the organ function tests
CO 8	Make use of theoretical concepts of Clinical Biochemistry and
	develop experimental acumen.

Course	Unit		
Code/	Oille	Course/ Unit Title	Credits/
		Clinical Biochemistry	Lectures
Unit		RUSBCH603	2.5 Credits
	1	Biochemistry of Haeme	15L
	1.1.1	Iron metabolism- Absorption, Transport, distribution,	2L
		Storage & excretion	
	1.1.2	Role of apoferritin & Transferin	2L
	1.1.3	Haemochromatosis	
	1.2	Haematopoiesis	3L
	1.2.1	Erythropoiesis - Stages of development of	
I	400	erythrocytes, Precursors of RBCs	
	1.2.2	Factors influencing erythropoiesis	ာ၊
	1.3	Anemias: Definition and types (Hemolytic,	3L
		hemorrhagic, megaloblast, pernicious, iron deficiency and aplastic anemia), polycythemia	
	1.4.1	Chemistry of Haemoglobin (Hb)- Haeme & globin,	3L
		Varieties of haemoglobin, Hemoglobin derivatives)
		with gases, Haeme-haeme interactions	
	1.4.2	Overview of Biosynthesis of Haemoglobin	2L
	2	Body Fluids	15L
	2.1	Intracellular, extracellular and interstitial fluid.	3L
		Homeostasis, control system and their components	
	2.2	Bile - Formation, composition, function and disorder	3L
l II		(jaundice, bile duct stones)	
	2.3	Plasma – Composition, plasma proteins, function,	3L
		plasma cell disorder	
	2.4	CSF - Composition, function, CSF analysis, CSF leak	3L
	2.5	Composition and function of –Synovial fluid,	3L
	3	Pericardial fluid, Tears, Sweat	15L
	3.1	Endocrinology Definition of Hormones, hormone receptor, endocrine	2L
	3.1	& exocrine glands	2L
	3.2	Classification of hormones on the basis of:	2L
	0.2	i)Distance of target tissue- autocrine, paracrine,	22
		endocrine	
		ii) Chemistry - One example for each sub class.	
III	3.3	Hierarchal organization of the mammalian endocrine	1L
		system	
	3.4.1	Chemistry, synthesis, secretion & physiological role of	2L
		thyroxine and insulin (Synthesis from preproinsulin)	
	3.4.2	Hypothyroidism (cretinism and myxedema),	2L
		Hyperthyroidism (goiter – simple & toxic), Diabetes	
	2.5	mellitus	21
	3.5	Physiological role of glucocorticoids, oxytocin & vasopressin, FSH, LH, Estrogen, Progesterone	3L
		(Reproductive cycle)	
		(Izehionneise choie)	

	3.6	Mode of action of steroid hormones and epinephrine (amplification cascade with G proteins, cAMP,	3L
		adenylate cyclase, kinases)	
	4	Organ Function Tests, Biochemical Assessments	15L
		and Changes in Endocrine Disorders	
	4.1	Organ Function Tests	4L
	4.1.1	Liver Function test – Bilirubin (direct and indirect), SGPT, SGOT, ALP, Prothrombin time	
	4.1.2	Renal Function test - Urea clearance test, Creatinine	4L
IV		clearance test, Test of renal ability to excrete acid,	
		Intravenous pyelography, Radioactive renogram	
	4.1.3	Gastric Function test – Examination of resting	4L
		contents	
	4.1.4	Pancreatic function test – Serum amylase activity, GTT	
	4.1.5	Cardiac Profile – Cardiac biomarkers to diagnose	3L
		heart attack, Serum cholesterol and triglycerides test Practicals – RUSBCHP603	1.5 Credits
	1	Estimation of RBC count by Haemocytometer	1.5 Credits
	2	Estimation of iron by Wong's method	
	3	Bile Analysis: Detection of Bilirubin & Bile salts	
	4	Clinical analysis of CSF – glucose, proteins, chlorides	
		Liver Function Tests –	
	5	a) Estimation of serum ALT and AST	
		b) Estimation of total and direct bilirubin	
		Renal Function tests –	
	6	a) Creatinine clearance test	
		b) Urea clearance test	
	7	Estimation of serum amylase activity	

- 1. Harpers Illustrated Biochemistry 30th Edition
- 2. Burtis, C.A., Awood, E.R. and Bruns, D.E. TIETZ Text book of Clinical Chemistry and Molecular Diagnosis, 4th Ed. Elsevier.
- 3. Bishop, M.L., Fody, E.P and Schoeff, L. Clinical Chemistry- Principles, Procedures, Correlations. 5th Ed. Lippincort Willimy & Wilkins.
- 4. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 5. Henry Richard et al Clinical Chemistry, Principles and Techniques, 2nd edition, Harper and Row, New York
- 6. Kamal SH Clinical Biochemistry for Medical Technologies, Churchill Livingston, London
- 7. Todd et al Clinical Diagnosis and Management, 17th edition, WB Saunders, Philadelphia
- 8. Gill CV Short cases in clinical biochemistry, Churchill Livingston, Edinburgh,
- 9. Bayens Dominiezak Medical biochemistry, Mosby Publishers, Harcourt
- 10. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 11. Biochemical methods by S Sadashivam & A ManIckam, New Age International publisher.

Course Title: Nutritional Biochemistry

Academic year 2023-24

COURSE OUTCOME	DESCRIPTION
	A student completing this course will be able to:
CO 1	Outline the importance of balanced diet and other parameters in
	maintaining it.
CO 2	Explain the functions of macronutrients & micronutrients
CO 3	Enlist the biochemical, physiological, and clinical impacts of
	inadequate intake of specific nutrients.
CO 4	Develop a keen insight into interrelationship between genes and
	nutrients.
CO 5	Justify the importance of nutrition in health and study the main
	features of carbohydrates, proteins, lipids, and minerals.
CO 6	Summarize the newer concepts of dietary management of various
	disorders and disease.
CO 7	Select biochemical techniques relevant in nutritional biochemical
	research
CO 8	Make use of theoretical concepts of Nutritional Biochemistry and
	develop experimental acumen.

Course	Unit		Credits/
Code/		Course/ Unit Title	Lectures
Unit		Nutritional Biochemistry	2.5 Credits
	4	RUSBCH604	451
	1.1.1	Introduction to Nutrition Introduction to Human nutrition & energy supply	15L 2L
		Measurement of energy content of food-	2L
	1.1.2	Calorific value of different biomolecules & mixed diet,	
		Determination of calorific value using bomb	
		Calorimeter (Principle & Working)	
		Respiratory quotient of food	2L
	1.3	Measurement of energy expenditure	
		Basal metabolic rate- Definition, Measurement,	
	1.4	factors affecting BMR & its significance Specific dynamic action of food- Definition,	/1L
		Mechanism & its significance	
	1.5	Sources, Daily requirement & Nutritional importance of biomolecules	4L
	1.5.1	Carbohydrates- Concept of Glycemic Index of food (Graph), Importance of fiber (Complex carbohydrate) in nutrition	
'	152	Lipids-Role of essential fatty acids	
		Proteins- Essential amino acids, Nitrogen Balance	
		(Positive, Negative Nitrogen balance & factors	
		affecting)	
		Assessment of nutritive value of protein	3L
		Protein efficiency ratio	
		Biological value of protein	
		Net protein utilization Chemical score	
		Mutual supplementation of protein	
		Recommended Dietary allowances (RDA)-Definition,	1L
		Factors affecting RDA, RDA for adult	
	1.8	Balance diet – Concept & significance, Designing	2L
		diet for different subjects (infants, toddlers,	
		adolescents, adults, geriatric, diseased state)	
		Numericals based on above concepts	4.51
	2	Macroelements	15L
	2.1	Biochemistry of macroelements	3L
	2.2	Sources, Recommended daily allowances, Absorption, transport, excretion, Biochemical	3L
		significance & Disorders related to:	
II	2.2.1	Calcium	3L
		Phosphorous	
		Magnesium	3L
		Sodium	
	2.2.5	Potassium	3L

	2.2.6	Chlorine	
	2.2.7	Sulphur	
	3	Microelements	15L
	3.1	Biochemistry of microelements	2L
	3.2	Sources, Recommended daily allowances,	3L
		Biochemical significance & Disorders related to:	
	3.2.1	Copper	3L
III	3.2.2	lodine	
""	3.2.3	Manganese	3L
	3.2.4		
		Molybdenum	3L
	3.2.6	Cobalt	
	3.2.7	Fluorine	
	3.2.8	Selenium	1L
	4	Nutrigenomics, Nutritional disorders and	15L
		Antinutritional Factors	
	4.1	Nutrient-Gene Interaction	2L
	4.2	Drug-Nutrient Interaction	
	4.3	Obesity, Brown and White Adipose Tissue, Specific	2L
		dynamic action factors affecting thermic effect of	
		food.	
	4.4	Role of Leptin, Ghrenin, Adiponectin in food intake.	2L
IV	4.5	Pathophysiology of Nutritional disorders	2L
	4.5.1		
		dependent diabetes mellitus, Lactose intolerance,	
		Celíac disease	
	4.5.2	Nutritional disorders of proteins- Protein energy	2L
		Malnutrition (Kwashiorker, Marasmus & Marasmic	
	4.50	kwashiorkor)	01
	4.5.3	Nutritional disorders related to lipids – Essential fatty	2L
	454	acid deficiency, cholesterol (Good vs Bad)	01
	4.5.4	Eating disorders – Bulimia nervosa, Anorexia	2L
	4.6	hervosa Antiquitritional factors Phytin evalutes tenning	41
	4.6	Antinutritional factors – Phytin, oxalates, tannins,	1L
		trypsin inhibitors, soluble and non-soluble NSPs Practicals – RUSBCHP604	1.5 Credits
	1		1.5 Credits
	2	Anthropometric measurements Isolation of casein from milk	
	3	Extraction of albumins and globulins from egg white	
)	4	Isolation of lipids from egg yolk and separation by	
	-	TLC.	
	5	Estimation of Calcium by EDTA method	
	6	Estimation of phosphorus by Fiske Subarrow method	
	7	Estimation of copper by the Isoamyl alcohol method	
	8	Survey on nutritional disorders and its statistical	
		analysis	
L	1	· ·	

- Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York)
- 2. Human nutrition and dietetics by Davidson, S. etal.; Churchill Livingstone Publishers.
- 3. Nutrition and dietetics by Joshi, Shubhangini A.; Tata McGraw and Hill publishers
- 4. Nutrition Science by Srilakshmi, B.; New Age International publishers
- 5. Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications.
- 6. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications..
- 7. Principles of Nutritional Assessment (2005) Rosalind Gibson. Oxford University Press.
- 8. Nutritional Biochemistry: Tom Brody.
- 9. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 10. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 11. Introduction to Human nutrition, second edition, Edited on behalf of The Nutrition Society by Michael J Gibney, Susan A Lanham-New, Aedin Cassidy, Hester H Vorster Wiley Blackwell Publications

Modality of Assessment (SEMESTER VI)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 5	15	UNIT I
Q2.	Any 3 out of 5	15	UNIT II
Q3.	Any 3 out of 5	15	UNIT III
Q4.	Any 3 out of 5	15	UNIT IV
	TOTAL	60	

Practical Examination Pattern:

Practical I

	Particular	Marks			Particular	Marks
a)	Project Work (Contents Submitted in the bound form)	30	OR	a)	Successful completion of courses (30 to 45 contact hours)	30
b)	Presentation to external examiner	10	OK	b)	Presentation to external examiner	10
c)	Viva- voce	10		c)	Viva- voce	10
	TOTAL	50			TOTAL	50

A) Internal Examination: 40%- 40 Marks

Particulars	Practical II, III & IV				
Journal	05				
Experimental tasks	15				
Total	20				

B) External Examination: 60%-60 Marks

Semester End Practical Examination:

Particulars	Practical II, III & IV			
Laboratory work	25			
Viva	5			
Total	30			

Overall Examination & Marks Distribution Pattern

Semester VI

Course	6	01		602			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	603			604			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100
