S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: TYBSc

Program Code: RUSBCH

(Credit Based Semester and Grading System for academic year 2022–2023)

GRADUATE ATTRIBUTES

GA	GA Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
GA 1	Recall and explain acquired scientific knowledge in a
	comprehensive manner and apply the skills acquired in their
	chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans and
	execute them, organise data and draw inferences.
GA 3	Explore and evaluate digital information and use it for
	knowledge upgradation. Apply relevant information so
	gathered for analysis and communication using appropriate
	digital tools.
GA 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a
	project plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently,
	as well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate
GA 6	manner.
GAO	Apply scientific information with sensitivity to values of different cultural groups. Disseminate scientific knowledge
	effectively for upliftment of the society.
GA 7	Follow ethical practices at workplace and be unbiased and
OA 1	critical in interpretation of scientific data. Understand the
	environmental issues and explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the
	specific discipline and adapt to technological advancements for
	better application of scientific knowledge as a lifelong learner

PROGRAM OUTCOMES

РО	Description
	A student completing Bachelor's Degree in SCIENCE program in
	the subject of BIOCHEMISTRY will be able to:
PO 1	Achieve better understanding of the major thrust areas of the
	disciplines like Chemistry of Biomolecules & their metabolism,
	Cell biology (Basics, Membrane biochemistry, Cancer),
	Enzymology, Genetics, Plant Biochemistry, Pharmacology,
	Microbiology & Immunology.
PO 2	Gain acumen of the fundamental biochemical processes
	occurring at the molecular and gene level.
PO 3	Understand the role of Biochemistry in food, human nutrition
	and environmental science.
PO 4	Get insights into multiple important analytical tools for
	Biochemical testing and apply contextual knowledge and tools
	of biochemical research for problems solving.
PO 5	Acquire and empower technical knowledge by connecting
	disciplinary and interdisciplinary aspects of biochemistry.
PO 6	Compile and interpret Biological data using Biostatistics and
	Bioinformatics tools.
PO 7	Express ideas persuasively through scientific writing and oral
	presentation which will help in the development of the
	leadership qualities.
PO 8	Possess scientific temperament by research project-based
	learning.
PO 9	Procure hands-on real time experience in industries.
PO 10	Get exposure to the strong theoretical and practical
	understanding of various dimensions of Biochemistry and take
	up research-oriented courses in the fields of Biochemistry,
	Nutrition & Dietetics, Molecular Biology, etc.

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RUSBCH501	Membrane Biochemistry & Cancer Biology	2.5
		RUSBUBBU	Introduction to Pharmacology & Basics of Immunology	2.5
		RUSBCH503	Molecular Biology	2.5
	V	RUSBCH504	Biostatistics & Bioinformatics	2.5
		RUSBCHP501	Practicals based on RUSBCH501	1.5
		RUSBCHP502	Practicals based on RUSBCH502	1.5
		RUSBCHP503	Practicals based on RUSBCH503	1.5
TYBSc		RUSBCHP504	Practicals based on RUSBCH504	1.5
		RUSBCH601	Human Physiology	2.5
		RUSBCH602	Food Biochemistry & Environmental Science	2.5
		RUSBCH603	Clinical Biochemistry	2.5
	VI -	RUSBCH604	Nutritional Biochemistry	2.5
	V 1	RUSBCHP601	Project Work	1.5
		RUSBCHP602	Practicals based on RUSBCH602	1.5
			Practicals based on RUSBCH603	1.5
		RUSBCHP604	Practicals based on RUSBCH604	1.5

Course Title: Membrane Biochemistry & Cancer Biology

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the importance of carbohydrates, lipids and proteins as
	a structural component of biomembranes.
CO 2	Summarize the composition and structure of biomembranes,
	transport mechanisms across biological membranes.
CO 3	Illustrate the mechanism of oxidative phosphorylation,
	photophosphorylation and basic concept of Bioenergetics
CO 4	Learn the concept and mechanism of ATP synthesis
CO 5	Describe factors that contribute to cancer development, discuss
	cancer prevention and currently available therapeutic treatments.
CO 6	Develop an understanding on various genetic and molecular
	changes which takes place during transformation into malignant
	cells.

Course	Unit	Course/ Unit Title	Credits/
Code/		Membrane Biochemistry & Cancer Biology	Lectures
Unit		RUSBCH501	2.5 Credits
	1	Biomembranes & Cell Surface	15L
	1.1	Overview of membrane functions	2L
	1.2	Fluid mosaic model	
	1.3	Chemical Composition of Membranes	3L
	1.3.1	Membrane lipids (Phospholipids, Glycolipids,	
		sterols (Cholesterol), Lipid rafts	
	1.3.2	Membrane proteins - Classification- Peripheral	8L
		Proteins, Integral Membrane	
		Proteins and Lipid-Anchored proteins	
		Peripheral Proteins- Spectrin on RBC	
		Integral Membrane Proteins- Glycophorin A on	
		RBC	
		Lipid-Anchored proteins- Role of GPI anchored	
		protein in blood grouping	
	1.3.3	Membrane carbohydrate – Role of membrane	2L
		glycoproteins	
	2	Membrane Transport, Vesicular Transport and	15L
		Membrane Fusion	
	2.1	Introduction to the transport mechanism across cell	3L
		membrane	
	2.2	Passive transport – Passive diffusion (Polar & Non	
		polar), diffusion and osmosis, facilitated diffusion of	
		ions and molecules	
	2.3	Ion channels- Ligand gated, mechanical gated,	3L
II		Voltage gated	
	2.4.1	Primary Active transport	2L
		ATPases pump- Na+-K+ Pump, ABC transporter	
	2.4.2	Secondary active transports	2L
		Symport (Mechanism of Absorption of peptides by	
		eneterocytes)	
	2.5	Specialized ion channels- Aquaporins	3L
	2.6	Antiport -Absorption of peptides by eneterocytes,	
	2.7	Artificial membrane vesicle-Liposomes, Micelles	2L
III	3	Bioenergetics & Oxidative Phosphorylation	15L
	3.1.1	Principle of Bioenergetics	2L

	3.1.2	Importance of thermodynamics, concept of Gibb's free energy, enthalpy, entropy, Standard free energy change and equilibrium constant	3L
	3.2	Oxidative phosphorylation Electron transfer reactions in mitochondrion (Complexes I to IV; Q cycle in Complex III)	4L
	3.3	Structure of ATP synthase and ATP synthesis Models for ATP synthesis - chemiosmotic model & Rotational Catalysis	4L
	3.4	Inhibitors & Uncouplers of ETC and ATP synthesis	2L
	4	Cancer Biology & Apoptosis	15L
	4.1.1	Introduction to the biology of cancer	2L
	4.1.2	Difference between tumor and Cancer	
	4.2.1	Classification of tumor	2L
	4.2.2	Properties of cancer cells	
	4.3	Cell cycle regulators and cancer	1L
	4.4.1	Oncogene- Ras protein	2L
	4.4.2	Tumor suppressor gene- Role of P53, Comparison	
		between functional & Non-Functional p53	
IV	4.5	Assays – Trypan blue exclusion method, MTT	2L
		assay, Soft Agar Colony Formation Assay	
	4.6	Cancer therapy -	2L
	4.6.1	Chemotherapy (purine & pyrimidine analog)	
	4.6.2	Demethlyating agents	
	4.7	Apoptosis –	2L
	4.7.1	Properties of apoptotic cells	
	4.7.2	Difference between apoptosis and Necrosis	
	4.7.3	Role of caspases in apoptosis	
	4.7.4	Mechanism (Intrinsic & Extrinsic pathway)	2L
	_	Practicals – RUSBCHP501	1.5 Credits
	1	Osmosis across dialysing membrane	
	2	Diffusion rate of KMnO ₄	
	3	Study the differential permeability of a semi-	
	4	permeable membrane Effect of temperature and melecular weight on	
	4	Effect of temperature and molecular weight on diffusion	
	5	Visualization of cells by methylene blue	
	6	Study of viability of cells using Neutral red Assay	
	7	Mitochondrial respiration and effect of different	
	,	Inhibitors for ETC (Dry lab)	
	<u> </u>		

- 1. Jain MK. Introduction to Biological membranes, John Wiley and sons New York, 1988
- 2. Vance DE & Vance JE, Biochemistry of lipids and Biomembranes, Benzamin Cummings 1985
- 3. Biomembranes by RB Gennis Springer Verlag 2012 2nd edition
- 4. Jones MN & Chapman D. Micelles monolayers and biomembranes Wiley-Lis New York, 1995
- 5. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 6. Weinberg RA. The Biology of Cancer, Second Edition, NewYork: GarlandScience,2013.
- 7. Ruddon RW. Cancer Biology, fourth edition, Oxford University Press, USA.
- 8. Biochemistry by Voet & Voet, International student version
- 9. Lehninger's Principles of Biochemistry by David L. Nelson
- 10. Introductory Practical Biochemistry by Sawhney
- 11. Practical Biochemistry by David Plummer
- 12. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 13. Principles of Genetics by D. Peter Snustad, Michael J. Simmons
- 14. Concepts of Genetics by William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian
- 15. Molecular Biology of Cancer Mechanisms, Targets, and Therapeutics by Lauren Pecorino

Course Title: Introduction to Pharmacology & Basics of Immunology

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME CO 1 Know basics of pharmacology like scope & general principles CO 2 Define drug and illustrate on types of drugs including their use. Classify the various routes of administration with advantages and disadvantages CO 3 Understand the process of Drug Receptor Interaction CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		
CO 2 Define drug and illustrate on types of drugs including their use. Classify the various routes of administration with advantages and disadvantages CO 3 Understand the process of Drug Receptor Interaction CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		DESCRIPTION
Classify the various routes of administration with advantages and disadvantages CO 3 Understand the process of Drug Receptor Interaction CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 1	Know basics of pharmacology like scope & general principles
disadvantages CO 3 Understand the process of Drug Receptor Interaction CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 2	Define drug and illustrate on types of drugs including their use.
CO 3 Understand the process of Drug Receptor Interaction CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		Classify the various routes of administration with advantages and
CO 4 Explain the basic concepts of Pharmacokinetics with Drug absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		disadvantages
absorption, Distribution, Metabolism and Excretion CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 3	Understand the process of Drug Receptor Interaction
CO 5 Validate bioassays to meet regulatory requirements CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 4	Explain the basic concepts of Pharmacokinetics with Drug
CO 6 Develop an understanding of the characteristics and the nature of antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		absorption, Distribution, Metabolism and Excretion
antigen – antibody reactions CO 7 Justify the role of immune cells and their mechanism in body defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 5	Validate bioassays to meet regulatory requirements
CO 7 Justify the role of immune cells and their mechanism in body defence system Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 6	Develop an understanding of the characteristics and the nature of
defence system CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		antigen – antibody reactions
CO 8 Illustrate various mechanisms that regulate immunological response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 7	Justify the role of immune cells and their mechanism in body
response and how it's triggered and regulated CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western		defence system
CO 9 Learn different tools & techniques used in diagnosis like Radioimmunoassay, ELISA, Immunofluorescence, Western	CO 8	Illustrate various mechanisms that regulate immunological
Radioimmunoassay, ELISA, Immunofluorescence, Western		response and how it's triggered and regulated
	CO 9	Learn different tools & techniques used in diagnosis like
		Radioimmunoassay, ELISA, Immunofluorescence, Western
Blotting, etc.		Blotting, etc.

Course	Unit	Course/ Unit Title	Credits/
Code/		Introduction to Pharmacology & Basics of	Lectures
Unit		Immunology	
O i iii		RUSBCH502	2.5 Credits
	1	Introduction to Pharmacology &	15L
		Pharmacodynamics	
	1.1	Introduction to pharmacology	1L
	1.2	Drugs - Sources, Classification and Nomenclature	3L
	1.3	Pharmacodynamics and Basis of Drug Action	
	1.4.1	Drug Receptor Interaction – Receptor Theory of	4L
		Drug Action, Location of Drug Receptor-G-Coupled	
I		Protein receptors	
	1.4.2	Drug Acting on enzymes	2L
	1.4.3	Non receptor mechanism of drug action	
	1.4.4	Placebo effect	
	1.5.1	Affinity and Intrinsic Activity	3L
	1.5.2	Intensity of Drug Response – Potency and Efficacy	
	1.6	Combined Effects of Drug – Synergism,	2L
		Antagonism	
	2	Pharmacokinetics & Bioassay	15L
	2.1	Physicochemical properties of drugs	1L
	2.2	Routes of drug administration	3L
	2.3.1	Drug absorption: through-GIT, pulmonary, renal,	3L
l II		placental and blood-brain barrier	
"	2.3.2	Bioavailability and Bioequivalence	1L
	2.4	Drug Distribution	
	2.5	Drug Metabolism and Excretion	2L
	2.6	Factors affecting drug dosage and drug delivery	2L
	2.7	Bioassay – Preclinical & clinical studies	3L
	3	Introduction to Immunology	15L
	3.1.1	Innate immunity – Anatomical barriers,	4L
		physiological barriers, phagocytic/endocytic	
		barriers, Inflammatory barriers	
	3.1.2	Adaptive immunity – Active & Passive	
III	3.2	Cells of the immune system:	4L
		Lymphocytes – B cells and T cells, Natural killer	
		cells – Mononuclear phagocytes, Granulocytes,	
		Antigen presenting cells	
	3.3	Organs of the immune system	4L
	3.3.1	Primary lymphoid organs: Thymus, Bone marrow	

	3.3.2	Secondary lymphoid organs: Lymphatic system,	
		Lymph nodes, Spleen, MALT	
	3.4	Immune responses - Humoral & Cell mediated	3L
		response	
	_	Overview of B-cell & T-Cell activation, maturation &	
	3.5	differentiation	
	4	Antigens and antibodies	15L
	4.1	Antigens: Antigenecity, immunogenecity, epitope,	3L
		factors determining immunogenecity, Haptens,	
		adjuvants	
	4.2	Antibodies	5L
	4.2.1	Tiselius & Kabat Experiment, Porter & Edelman	
		Experiment	
	4.2.2	Fine structure of immunoglobulin	
	4.2.3	Antibody classes and biological activities	
IV	4.2.4	Antigenic determinants on immunoglobulins, B-cell	
l V		receptor	
	4.3	Antigen- Antibody interactions: Forces involved,	2L
		antibody affinity, antibody avidity, Cross reactivity	
	4.3.1	Precipitation reactions – Oudins, Ouchterlony	2L
	4.3.2	Agglutination reactions: Blood typing, bacterial	3L
		agglutination, passive agglutination, agglutination	
		inhibition, Coomb's test	
\cap Y	4.3.3	Immunoelectrophoresis: Principles of	
		Radioimmunoassay, ELISA, Immunofluorescence,	
		Western Blotting	,
		Practicals – RUSBCHP502	1.5 Credits
	1	Monograph of a pharmaceutical drug	
	2	Problems based on drug dosage	
	3	Preparation of blood smear and Differential	
		leucocyte count	
	4	Immunoprecipitation of antigen and antibody	
	5	Ouchterlony double immunodiffusion (DID)	
	6	Assays based on agglutination reactions - Blood	
		typing	
	7	Demonstration of Enzyme linked immunosorbent	
		assay (ELISA)	
	8	WIDAL test – Qualitative & Quantitative	

- 1. Essentials of Pharmacotherapeutics by FSK Barar
- 2. Pharmacology and Pharmacotherapeutics by R.S. Satoskar, Nirmala N. Rege, S.D. Bhandarkar, Elsevier
- 3. Immunology by Goldsby and Kuby, W.H. Freeman Co.
- 4. Weir D.M., Immunology: Student's Notes, ELBS- Oxford.
- 5. Bowry T.R., Immunology Simplified, 2nd Ed., ELBS and Oxford.
- 6. Ivan, Immunology Method Manual, Vol. 4 1997, Academic Press, Sani Diego.
- 7. Roitt Ivan and others, Immunology, 6th Ed., Mosby, Edinburg.
- 8. Hood Leroy E., Immunology, 2nd Ed., 1976, Benjamin Cummings Publication
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Course Title: Molecular Biology

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Learn the molecular events of DNA Replication, transcription and
	translation process
CO 2	Understand the principle of gene organization and the roles of
	promoters, coding and termination sequences
CO 3	Distinguish and compare the transcription process occurring in
	prokaryotes and eukaryotes
CO 4	Describe how gene expression is regulated at the post-
	transcriptional level
CO 5	Analyse the tools and techniques for construction of recombinant
	DNA, cloning vectors & genomic and cDNA library
CO 6	Gain knowledge on the applications of RDT in various field

Course	Unit	Course/ Unit Title	Credits/
	Offic		
Code/		Molecular Biology	Lectures
Unit		RUSBCH503	2.5 Credits
	1	DNA Replication & Repair	15L
	1.1.1	Replication of DNA (in prokaryotes)	3L
	1.1.2	Modes of DNA replication: Theta & rolling circle	
	1.2	Enzymes (pol I, II and III) and accessory proteins	3L
	1.3	Mechanism of semi-conservative replication	3L
_		(Initiation, elongation & termination)	
I	1.4	DNA repair Mechanisms	4L
	1.4.1	Direct repair (Photoreactivation, O ⁶ methyl guanine	
		DNA methyl transferase)	
	1.4.2	Excision repairs - base & nucleotide excision,	
	1 1 2	Mismatch repair (Hemimethylation of DNA)	
	1.4.3	SOS repair	2L
	1.4.4	Recombinational repair	
	2	Transcription & Post-transcriptional Modifications	15L
	2.1	Introduction to Transcription	1L
	2.2	Types of RNA & its function	2L
	2.3	Assembly for transcription-Template strand, RNA	
		polymerase Holoenzyme, Transcriptional unit,	
		Promoter	
	2.4	Mechanism of RNA transcription in prokaryotes:	3L
		Initiation, elongation and termination	
	2.5	Significance of Sigma factor, Concept of Abortive	1L
		initiation	
II	2.6	Comparative overview of transcription in	2L
		prokaryotes & eukaryotes	
	2.7	Inhibitors of transcription -Rifampicin, Actinomycin	
	0.0.4	D SNA (M.)	41
	2.8.1	mRNA (Mechanism of formation of 5'-cap and poly	1L
	0.00	A tail),	01
	2.8.2	Post-transcriptional modifications: Concept of	2L
		introns, exons, split genes and mechanism of mRNA splicing	
	2.8.3	Processing of tRNA, rRNA (arrangement of	1L
	2.0.3	prokaryotic rDNA)	16
	2.9	Reverse transcription (Mechanism, significance &	2L
	۷.5	application)	2 L
		application)	

	3	Translation & Post-translational Modifications	15L
	3.1	Introduction to Translation (protein biosynthesis) in	1L
		prokaryotes	
	3.2	Characteristics of Genetic code, tRNA synthetase	2L
	3.3	Mechanism of translation: Activation of amino	4L
		acids, chain initiation, elongation & termination	
III	3.4	Inhibitors of prokaryotic translation (Puromycin,	2L
""		Streptomycin, Tetracycline, Chloramphenicol,	
		Erythromycin)	
	3.5	Post translational modifications of proteins	2L
		(proteolytic cleavage, acylation, phosphorylation,	
		methylation, glycosylation)	
	3.6	Signal hypothesis	2L
	3.7	Concept of Protein sorting in cell organelles	2L
	4	Introduction to RDT & techniques of RDT	15L
	4.1	Introduction of RDT	3L
	4.2	Tools for RDT	
	4.2.1	Enzymes- Restriction endonucleases, ligases,	
		terminal transferases, reverse transcriptase	
	4.2.2	Cloning and Expression Vectors-	3L
		Plasmid, pBR 322, PUC-19	
		Bacteriophage – Lambda phage	
		Cosmid; Artificial Chromosomes (BAC and YAC)	
IV		Shuttle vectors	
10	4.2.3	Probes- DNA probes	2L
	4.3	Applications of RDT- Agriculture (Bt Cotton);	
		Medicine (Insulin); GM food	
	4.4	Isolation of gene: Gene library and c-DNA library;	2L
		Southern blot; Northern blot	
	4.5	Gene Transfer: Transfection, Electroporation,	3L
		Microinjection, Liposome, Microprojectile (in brief)	
	4.6	Selection and screening- Antibiotic and colony	2L
		hybridization	
	4.7	DNA Amplification by PCR	
		Practicals - RUSBCHP503	1.5 Credits
	1	Estimation of UV absorption of nucleic acids &	
		proteins	
	2	Study of viscosity of DNA solution	
	3	Estimation of DNA by the Diphenylamine method	
	4	Isolation of chromosomal DNA from <i>E coli</i> cells	
	5	Isolation of RNA from Yeast/ Liver	
	6	Estimation of RNA by Orcinol Method	
	7	Extraction of total nucleic acids from plant tissue	

- 1. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 2. Tropp, B.E. Molecular Biology. Genes to Proteins.2011 (4th Ed.) Jones and Bartlett publications.
- 3. Freifelder, D. Essential of Molecular Biology, 1998 (3rd Ed.)
- 4. Lewin, B. Gene X, Jones & Bartlett, 2009
- 5. Molecular Cell Biology by James Dernell, Harvey Lodish and David Baltimore, W.H. Freeman & Co., 2007 (6th Ed.).
- 6. From Genes to Genomes by Bale J.W. & Schantz M. V. (2003).
- 7. Gene Biotechnology by Jogdand
- 8. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Course Title: Biostatistics & Bioinformatics

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Organize the fundamental concepts in the design and analysis of medicinal studies, including difference between observational and experimental studies, the outcome measure of study, comparability of the control group or control population.
CO 2	Collect data relating to variables which can be examined and descriptive statistics can be calculated from the obtained data
CO 3	Translate the knowledge gained on types of data and tools of data collection in compiling and performing statistical analysis.
CO 4	Gain knowledge about various biological databases that provide information about nucleic acid and proteins.
CO 5	Locate and extract data from key bioinformatics databases and resources.
CO 6	Understand the use of computational skills in the field of Biology

Course	Unit	Course/ Unit Title	Credits/
Code/		Biostatistics & Bioinformatics	Lectures
Unit		RUSBCH504	2.5 Credits
	1	Biostatistics & descriptive statistics	15L
	1.1	Introduction to Biostatistics	2L
	1.2	Scope and applications of biostatistics	
	1.3	Common statistical terms: Sources, nature and	3L
		presentation of data; Measurement and scales of	
		measurement	
•	1.4	Descriptive statistics:	4L
	1.4.1	Measures of central tendency - Mean, Median and	
		mode	
	1.4.2	Measures of dispersion- Range, percentiles,	6L
		variance, SD, Mean deviation, Coefficient of	
		variation	
	2	Test of Hypothesis I	15L
	2.1.1	Normal distribution and normal curve	4L
	2.1.2	Asymmetric distribution	
	2.1.3	Normal variate & its significance	
	2.1.4	Statistical problems based on the above concepts	
	2.2	Introduction to Hypothesis	3L
	2.2.1	Concept of Level of Significance, Degrees of	
-		freedom, One-tailed and two tailed tests, Type I	
		and Type II errors	
	2.2.2	Hypothesis testing of mean - Z-test, t-test (grouped	5L
		and ungrouped data)	
	2.2.3	Statistical problems based on the above concepts	
	2.3.1	Introduction to ANOVA, Types of ANOVA	3L
	2.3.2	Statistical problems based on the above concepts	4=1
	3	Test of Hypothesis II	15L
	3.1.1	Introduction to Hypothesis testing of difference	5L
	0.4.0	between population means	
	3.1.2	Z-test, t-test (Paired and unpaired)	
III	3.1.3	Statistical problems based on the above concepts	41
	3.2	Tests based on Chi-square distribution	4L
	3.2.1	Test of population variance	01
	3.2.2	Test of goodness of fit	3L
	3.2.3	Test of association - 2 x 2 Table, Yates' correction	3L
IV.	3.2.4	Statistical problems based on the above concepts	451
IV	4	Bioinformatics	15L

4.1	Introduction to Bioinformatics	1L
4.2	Sequence & Nomenclature	2L
4.2.1	IUPAC Symbol	
4.2.2	Nomenclature of DNA Sequences	
4.2.3	Nomenclature of Protein Sequences	
4.2.4	Directionality of sequences	
4.3	Types of sequences used in bioinformatics-	2L
	Genomic DNA, cDNA, Organelle DNA, EST's,	
	Gene sequencing tag, STS & Biomolecules	
4.4	Information sources in Bioinformatics	1L
	Genome database, Mouse genome database,	
	Genebank	
4.5	Information retrieval from biological databases-	3L
	Entrez, Taxonomy browser, Locus link & Sequence	
	Retrieval Systems (SRS)	
4.6	Similarity based database searching tools- BLAST	3L
	& FASTA	
4.7	Resources for gene level sequence- Uni-gene	2L
	database, Homo-gene database & Refseq	
	database	
4.8	Applications of informatics tools in Analysis-	1L
	Genomics and Proteomics	
	Practicals – RUSBCHP504	1.5 Credits
1	Descriptive statistics using Microsoft excel	
2	Hypothesis testing of means & Hypothesis testing	
3	of difference between means using excel	•
	ANOVA & Chi-square test using excel	
4	Sequence retrieval (protein and gene) from NCBI	
	and Molecular file formats - FASTA,	
	GenBank/Genpept.	
5	BLAST suite of tools for pairwise alignment	
6	Molecular Visualization Softwares: Pymol and	
	Rasmol for protein structures from PDB	
7	Multiple sequence alignment	
	(CLUSTALW/TCoffee) and construction of	
	phylogenetic trees	

- 1. Biostatistics by P. K. Malhan and P. N. Arora, Himalaya Publishing house
- 2. Methods of biostatistics for medical students and research workers by Mahajan, B.K.; Jaypee brothers publishers.
- 3. Bioinformatics- Concepts, Skill and applications by Rastogi, S.C.; Mendiratta, Namita and Rastogi, Parag; C.B.S. Publishers & Distributors
- 4. Principles of biostatistics, M. Pagano and K. Gauvreau (2000); Duxbury Thomas learnings
- 5. Essential Bioinformatics (2006), JinXiong, Cambridge University Press
- 6. Bioinformatics: Sequence and Genome Analysis (2001), 1st ed., Mount, D.W. Cold Spring Harbor Laborator Press (New York)
- 7. Bioinformatics and Functional Genomics (2003), 1st ed., Pevsner, J., John Wiley & Sons, Inc. (New Jersey)
- 8. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins (2005), 3rd ed.,Baxevanis, A.D. & Ouellette, B.F., John Wiley & Sons, Inc. (New Jersey)
- 9. Bioinformatics Principles and Applications (2008), 1st ed. Ghosh, Z. and Mallick, B.,Oxford University Press (India)
- 10. A Textbook of Biotechnology R.C. Dubey by S Chand Publication

Modality of Assessment (SEMESTER V)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 1 out of 2	03	UNIT II
Q2. B	Any 2 out of 3	06	ONIT II
Q3. A	Any 1 out of 2	03	UNIT III
Q3. B	Any 2 out of 3	06	UNIT III
Q4. A	Any 1 out of 2	03	UNIT IV
Q4. B	Any 2 out of 3	06	UNII IV
2	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester V

Course	501		7	5	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	503			5	04	X	Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Title: Human Physiology

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Analyse the organization and processes of the muscular system
	and describe its location, function & physiology of muscle contraction
CO 2	Locate and describe the distinguishing features and types of
	muscle & identify the role of the muscular system in homeostasis of the human body
CO 3	Identify the major functions, composition and physiology of bone
CO 4	Understand the functions of physiological systems such as cardiac and reproductive and its related disorders.
CO 5	Elucidate the structure, layer, chamber and valves of the human
	cardiac system
CO 6	Describe the structure of the organs of the reproductive system in males and females.
CO 7	Integrate understanding of cellular and molecular mechanisms in
	neurons. To comprehend established information about
	neurophysiology
CO 8	Identify the major hormones involved in reproduction and describe
	their role in regulating reproduction in males and females.
CO 9	Summarize the organs of male and female reproductive system
	including structure its function & development and maturation in
	emergence of secondary characteristics
CO 10	Apply knowledge of research culture at under-graduate level, to
	know the concept of research its objectives, tools and importance
	and techniques of documentation.

Course	Unit	Course/ Unit Title	Credits/
Code/		Human Physiology	Lectures
Unit		RUSBCH601	2.5 Credits
Offic	1	Musculoskeletal system	15L
	1.1	Bone physiology	2L
	1.1.1	Function and Composition of bone	22
	1.1.2	Structural considerations-structure of bone; cells of	1L
		bone	. –
	1.1.3	Physiological considerations- Bone growth, Bone	3L
		formation, bone resorption; Bone remodelling	
	1.1.4	Metabolic Bone diseases- Rickets, Osteomalacia;	2L
'		Osteoporosis	
	1.2	Muscle Physiology	2L
	1.2.1	Types of muscle cells- Skeletal, Cardiac; Smooth	
		muscle (Structure; Comparison)	
	1.2.2	Structure of skeletal muscle, Muscle proteins-	3L
		Structural proteins (Actin; Myosin) & Cross-linking	
		proteins (Tropomyosin; Troponin)	
	1.2.3	Molecular theory of muscle contraction	2L
	2	Cardiac Physiology and related disorders	15L
	2.1.1	Structure of the heart	3L
	2.1.2	Layers of the heart wall	
	2.1.3	Chambers and valves of the heart	2L
	2.2	Physiology of the cardiac muscle	'71
	2.2		
	2.3	Conducting system of heart, comparative rates of	3L
II		Conducting system of heart, comparative rates of conduction system of heart	3L
II	2.3	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing	
II	2.4	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate	3L 2L
II		Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac	3L
II	2.4	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle	3L 2L
II	2.4	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output	3L 2L 2L 1L
II	2.4 2.5 2.6	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle	3L 2L 2L
II	2.4 2.5 2.6	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease,	3L 2L 2L 1L
II	2.4 2.5 2.6 2.7	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias	3L 2L 2L 1L 2L
	2.4 2.5 2.6 2.7	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias Neurophysiology Nervous system - Overview, Classification Neuron - Structure, classification based on	3L 2L 2L 1L 2L 15L
III	2.4 2.5 2.6 2.7 3 3.1.1 3.1.2	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias Neurophysiology Nervous system - Overview, Classification Neuron - Structure, classification based on structure and function	3L 2L 2L 1L 2L 15L 3L
	2.4 2.5 2.6 2.7 3 3.1.1 3.1.2 3.1.3	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias Neurophysiology Nervous system - Overview, Classification Neuron - Structure, classification based on structure and function Glial cells, formation of myelin sheath	3L 2L 2L 1L 2L 15L
	2.4 2.5 2.6 2.7 3 3.1.1 3.1.2	Conducting system of heart, comparative rates of conduction system of heart Heart sound, heart rate and factors influencing heart rate Cardiac cycle and effect of heart rate on cardiac cycle Cardiac output Hypertension, congestive heart disease, myocardial infarction, cardiac arrhythmias Neurophysiology Nervous system - Overview, Classification Neuron - Structure, classification based on structure and function	3L 2L 2L 1L 2L 15L 3L

	3.2.2	Processes – Depolarization, repolarization,	
		hyperpolarization	
	3.3	Generation of nerve impulse	2L
	3.4	Saltatory conduction of impulse, All-or-none principle	1L
	3.5.1	Neuromuscular junction	2L
	3.5.2	Action of Acetylcholine at chemical synapse	
	3.5.3	Removal of acetylcholine after its action and regeneration	
	3.6	Excitatory and inhibitory neurotransmitter pair in brain and spinal cord	2L
	3.7	Catecholamines as neurotransmitter	1L
	4	Reproductive system	15L
	4.1	Male reproductive system: scrotum, testes,	3L
		reproductive system ducts of in males, accessory sex glands	
	4.2	Female reproductive system: Ovaries, uterine	3L
		tubes, uterus, vagina, vulva, perineum, mammary glands	
IV	4.3	The female reproductive cycle: Hormonal	2L
		regulation of the female reproductive cycle, phases of the female reproductive cycle	
	4.4	Birth control measures; abortion: Surgical	2L
		sterilization, hormonal methods, abortion	
	4.5	Development of the reproductive systems	2L
		Aging; reproductive systems	
	4.6	Clinical connection: Cryptorchidism, vasectomy,	3L
		circumcision, premature ejaculation, ovarian cysts	
		Practicals – RUSBCHP601: PROJECT WORK	1.5 Credits
		Guideline to Carry Out Project work	
		1. The main purpose of introduction of Project Work	
		at TYBSc is to inculcate research culture at	
		under-graduation level. It will also make the	
		students familiar with Research Methodology i.e.	
		reference work, experimental work, analysis of experimental data, interpretation of results	
		obtained, writing of project work and compilation	
		of bibliography in proper order.	
		2. Each student individually or in a group shall	
		complete a small research project during their	
		academic year of TYBSc. However, the initial	
		reference work for the project can be started after	
	1		

- the conclusion of SYBSc Semester IV examination and summer vacation to TYBSc.
- 3. Nature of Research Project:- Experimental-based involving laboratory analytical work will be considered as the Research Project.
- 4. Duration of Project work:- Using the infrastructure available in the Biochemistry Department, Ramnarain Ruia Autonomous College, the duration to complete the project work will be from the commencement of the project work till the mid of January of TYBSc (Sem V) academic year.
- Schedule for Submission of project Work:-Experimental work must be completed and the report on the same (2 Copies) will have to be submitted by the end of January of TYBSc (Sem V) academic year.
- 6. The project should be divided into the following parts:
 - a) Certification of completion of Project Work
 - b) Acknowledgement
 - c) Introduction
 - d) Review of Related Literature
 - e) Aims and Objectives
 - f) Plan of work
 - g) Material and Methods
 - h) Results
 - i) Discussion
 - j) Bibliography
- 7. The project will be assessed

GUIDELINE FOR THE ASSESMENT OF PROJECT WORK

- The practical 601 of Sem VI (Course Code No. RUSBCHP601) shall be exclusively devoted for the project.
- 2. Each student will complete the project (2 copies) and get both the copies certified by the guiding teacher and the Head of Dept. (HOD) by January of TYBSc (Sem V) academic year.
- One copy of the certified project will be submitted to the Department; while the other copy will be retained by the students for his/ her personal record.

Research Project to the examiner followed by Viva- Voce examination based on the project work by the examiner. 5. The following Marking Scheme shall be considered while assessing the project work Particular Marks a) Project Work (Contents Submitted in the bound form) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	e candidate is required to present the	4.
work by the examiner. 5. The following Marking Scheme shall be considered while assessing the project work Particular a) Project Work (Contents Submitted in the bound form) b) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	search Project to the examiner followed by	
5. The following Marking Scheme shall be considered while assessing the project work Particular a) Project Work (Contents 30 Submitted in the bound form) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	a- Voce examination based on the project	
considered while assessing the project work Particular a) Project Work (Contents Submitted in the bound form) b) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work Project Work	k by the examiner.	
Particular a) Project Work (Contents 30 Submitted in the bound form) b) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	following Marking Scheme shall be	5.
a) Project Work (Contents 30 Submitted in the bound form) b) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	sidered while assessing the project work	
b) Presentation of Project Work to examiner c) Viva- voce Exam based on Project Work	ular Marks	Pa
c) Viva- voce Exam based on Project Work	ubmitted in the bound form)	a)
/ Project Work	examiner	b)
	va- voce Exam based on 10 roject Work	(c)
<u>TOTAL</u> 50	OTAL 50	

- 1. Principles of Anatomy and Physiology: Gerard J, 12th edition, John Wiley & Sons.
- 2. Human Physiology Chatterjee. C.C, Medical Allied Agency
- 3. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York),
- 4. Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi).

5.

6. Fundamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco),

Course Title: Food Biochemistry & Environmental Science

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Understand physical & chemical reactions in food, the role of
	enzymes in food processing and how they aid in carrying out
	changes in food
CO 2	Identify the chemistry and applications of enzymes in food
	industries and flavour.
CO 3	Acquire thorough knowledge about the changes in reactions in food
	and how enzymes could be of great importance in food processing
CO 4	Know the properties of different food components and to
	understand the principle underlying the biochemical techniques
	used in food analysis.
CO 5	Describe the interdisciplinary nature of environmental studies and
	also create awareness for the same.
CO 6	Impart knowledge of various methodologies that are adapted for
	effective monitoring of environmental parameters.
CO 7	Introduce the concept of water and waste water treatment
	techniques and the aspects involved in solid waste minimization
	and complete environmentally safe method of their disposal.

Course	Unit	Course/ Unit Title	Credits/
Code/		Food Biochemistry & Environmental	Lectures
Unit		Science	
		RUSBCH602	2.5 Credits
	1	Physicochemical Principles of food	15L
	1.1	Introduction & Importance	2L
	1.1.1	Physical & chemical characteristics of food	
	1.2	Factors affecting physicochemical properties	4L
	1.2.1	Enzymatic reactions- softening, Oxidation	
		(Ascorbic acid & Phenolic oxidation) Glycolytic	
		reaction, Hydrolytic reactions, pigmentation	
		(Cholorophylase) browning, Maillard reaction & Caramelization reaction	
	1.2.2	Chemical reactions-	4L
	1.2.2	Lipid oxidation, non-enzymatic browning	4L
		Colour changes - Chlorophylls - Anthocyanins -	
		Carotenoids (lipid soluble compounds)	
		3. Flavour changes	
		4. Phenophytinisation -photo- oxidation. –	
		Oxidation –	
		5. Enzyme-induced oxidative breakdown of	
		unsaturated fatty acids	
	1.3	Physicochemical changes in following food	1L
		Changes in fruit ripening	
		Comparison between Raw vs Ripe Fruit	
	1.3.1	Changes in meat- Post Mortem Changes in Meat	3L
		(Pre-rigor stage, Rigor Mortis, Post Rigor Stage	
	1.3.2	Lipid oxidation Non enzymatic hydrolysis by Haeme protein	1L
	1.3.2	Autolytic enzyme spoilage	16
	2	Enzymes in Food Processing	15L
	2.1	Enzymes in carbohydrates, proteins and lipid	3L
		modifications	
	2.1.1	Enzymes for starch modification-	
II		maltodextrins and corn syrup solids: liquefaction,	
"		saccharification, dextrinization, isomerization for	
		production of high-fructose-corn-syrup, fructose	
		and fructo-oligosaccharides	
	2.1.2	Enzymes for protein modification - hydrolysates	3L
		and bioactive peptides	

	2.1.3	Enzymes for Lipid modification- Lipase catalyzed synthesis of structured triglycerides, fats, and margarine	3L
	2.2	Enzymes as processing aids	3L
	2.2.1	Role of enzymes in Dairy processing - cheese	JL .
		making and whey processing	
	2.2.2	Role of enzymes in meat processing- tenderization and flavour development	
	2.2.3	Role of enzymes in fish processing- De-skinning, collagen extraction	
	2.2.4	Role of enzymes in Egg processing- catalase, glucose oxidase, hydrolase	
	2.3	Role of enzymes in the production of flavours	3L
	2.3.1	Enzyme-aided extraction of plant materials for production of flavours	
	2.3.2	Production of flavour enhancers such as nucleotides, MSG; flavours from hydrolyzed	
		vegetable/animal protein	
	3	Fundamentals of Environmental Chemistry	15L
	3.1	Air and Atmosphere	3L
	3.1.1	Particles, ions and radicals in the atmosphere	
	3.1.2	Chemical processes for formation of inorganic and	
		organic particulate matter	
21	3.1.3	Thermochemical and photochemical reactions in the atmosphere	2L
	3.1.4	Oxygen and ozone chemistry – Formation of ozone layer, sources and effects of ozone depletion on environment	
l III	3.1.5	Chemistry of air pollutants	2L
""	3.1.6	Photochemical smog, Carcinogens in the air	
	3.1.7	Effects of air pollution on health	
	3.2	Water and aquatic system	2L
	3.2.1	Organic pollutants [pesticides, insecticides,	
		detergents, oil spills, toxic organic chemicals]	
	3.2.2	Inorganic pollutants [heavy metals – Hg, Pb, As, Cd]	
	3.2.3	Thermal pollution of water	3L
	3.2.4	Concept of DO, BOD, COD, Acidity, Alkalinity, Hardness	
	3.2.5	Effects of water pollution on health	
<u> </u>	L	· ·	

	3.3	Soil	3L
		Soil properties, Types of soil pollution –	
		acidification, agrochemical pollution, salinization,	
		and contamination by metalliferous wastes	
	4	Environmental pollution management and	15L
		environmental monitoring	
	4.1	Air Pollution Management	3L
	4.1.1	Control methods for particulates - Gravitational	_
		Settling Chambers, Centrifugal collectors, Wet	
		collectors, Fabric Filters, Electro Static	
		Precipitators	
	4.1.2	Control methods for gaseous pollutants -	
		Adsorption, Absorption, Condensation,	
		Combustion	
	4.2	Water analysis & Waste water management	5L
	4.2.1	Physico – chemical and Bacteriological sampling	
		and analysis of water quality	
	4.2.2	Primary treatment methods – screening, grit	
		removal, primary sedimentation	
D./	4.2.3	Secondary treatment methods - Activated sludge	
IV		process, Trickling filters, Rotating biological	
	12	contactors, Oxidation ponds and Lagoons	
	4.2.4	Tertiary treatment methods - Chlorination, Ion	
\wedge		Exchange	
	4.3	Solid Waste Management	2L
		Sanitary Landfill, Recycling, Composting,	
		Incineration, Energy recovery options from organic	
		wastes	
	4.4	Environmental monitoring and remote sensing	4L
	4.4.1	Introduction & Objective	
	4.4.2	Types of Monitoring- Source Monitoring & Ambient	
		environment monitoring	
	4.4.3	Importance of remote sensing in environmental	
		monitoring	
	4.4.4	Approaches used to monitor the environment-air,	1L
		water and soil (Principles and Significance)	
		Practicals – RUSBCHP602	1.5 Credits
	1	Determination of salinity / chlorides in water by	
		Silver nitrate method	
	2	Determination of the Chemical Oxygen Demand of	
		water/ Effluent by the Potassium Dichromate	
		method	
	3	Determination of potability of water by conducting a	

	coliform count	
4	Determination of the Dissolved Oxygen content of	
	water/ Effluent by the Winkler's Iodometric method	
5	Determination of the Biological Oxygen Demand of	
	water/ Effluent	
6	Determination of the Alkalinity of water/ Effluent	
7	Determination of the Acidity of water/ Effluent	
8	Estimation of lead by the EDTA method	
9	Estimation of Organic content of soil by	
	Diphenylamine method	
10	Estimation of CaCO3 of soil by Bromothymol Blue	
	Method	
11	Visit to a Food processing industry and report	
	writing	

- Total Quality Assurance for the Food Industries WA Gould & RW Gould. CTI Publications Inc., USA 1988
- Current Good Manufacturing Practices for Food Plan Sanitation WA Gould, CTI Publications Inc. USA 1980
- 3. Enzymes in food and beverage processing by Muthusamy Chandrasekaran, CRC Press
- 4. Enzymes in Food Processing by Tilak Nagodawithana, Gerald Reed and Steve Taylor, Academic Press
- 5. Fundamental Concepts of Environmental Chemistry Sodhi, Narosa Publishing House, 2002
- 6. Principles of Environmental Chemistry Kothandaram & Swaminathan, B I Publishers, Chennai
- 7. Environmental Chemistry AK De, New Age International Publishers
- 8. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.

Course Title: Clinical Biochemistry

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Learn and understand the basics of circulatory system including
	Iron Metabolism, haematopoiesis, and Erythropoiesis
CO 2	Compare and contrast hemochromatosis and anemia of chronic
	disease from the perspective of iron homeostasis
CO 3	Define the composition of normal hemoglobin at various stages of
	development (include proteins and prosthetic groups)
CO 4	Describe the structural difference between different types of
	hemoglobin, compare O2 binding properties of hemoglobin,
	including haeme- haeme interactions
CO 5	Summarize Fundamentals, composition, and significance of Body
	fluids
CO 6	Differentiate body fluids and correlate its secretions to predict
	diagnosis
CO 7	Learn qualitative analysis of constituents of biological fluids such as
· ·	Bile, plasma, CSF, Synovial fluid, Pericardial fluid, Semen, Tears,
	Sweat etc
CO 8	Know the chemical nature of hormones, the relationship between
	structure and function of hormones, quantitative aspects of
	hormonal action in relation to endocrine disorder, the role of
	hormones as a regulatory factor of a living system, relation with some diseases
CO 9	Explain the clinical significance of the organ function tests
CO 10	Identify clinical disorders by estimating biomarkers
CO 11	Determine various substances including substrates, enzymes,
33 11	hormones, etc and their use in diagnosis and monitoring of disease
	are applied
CO 12	Evaluate the abnormalities which commonly occur in the clinical
	field

Course	Unit	Course/ Unit Title	Credits/
Code/	Oilit	Clinical Biochemistry	
		RUSBCH603	Lectures
Unit			2.5 Credits
	1	Biochemistry of Haeme	15L
	1.1.1	Iron metabolism- Absorption, Transport, distribution, Storage & excretion	2L
	1.1.2	Role of apoferritin & Transferin	2L
	1.1.3	Haemochromatosis	
	1.2	Haematopoiesis	3L
	1.2.1	Erythropoiesis - Stages of development of erythrocytes, Precursors of RBCs	
•	1.2.2	Factors influencing erythropoiesis	
	1.3	Anemias: Definition and types (Hemolytic, hemorrhagic, megaloblast, pernicious, iron deficiency and aplastic anemia), polycythemia	3L
	1.4.1	Chemistry of Haemoglobin (Hb)- Haeme & globin, Varieties of haemoglobin, Hemoglobin derivatives with gases, Haeme-haeme interactions	3L
	1.4.2	Overview of Biosynthesis of Haemoglobin	2L
	2	Body Fluids	15L
27	2.1	Intracellular, extracellular and interstitial fluid. Homeostasis, control system and their components	3L
II	2.2	Bile - Formation, composition, function and disorder (jaundice, bile duct stones)	3L
	2.3	Plasma – Composition, plasma proteins, function, plasma cell disorder	3L
	2.4	CSF – Composition, function, CSF analysis, CSF leak	3L
	2.5	Composition and function of –Synovial fluid, Pericardial fluid, Semen, Tears, Sweat	3L
	3	Endocrinology	15L
	3.1	Definition of Hormones, hormone receptor, endocrine & exocrine glands	2L
III	3.2	Classification of hormones on the basis of: i)Distance of target tissue- autocrine, paracrine, endocrine ii) Chemistry - One example for each sub class.	2L
	3.3	Hierarchal organization of the mammalian endocrine system	1L
	3.4.1	Chemistry, synthesis, secretion & physiological role of thyroxine and insulin (Synthesis from preproinsulin)	2L

	3.4.2	Hypothyroidism (cretinism and myxedema),	2L
		Hyperthyroidism (goiter – simple & toxic), Diabetes mellitus	
	3.5	Physiological role of glucocorticoids, oxytocin &	3L
		vasopressin, FSH, LH, Estrogen, Progesterone (Reproductive cycle)	
	3.6	Mode of action of steroid hormones and	3L
		epinephrine (amplification cascade with G proteins,	
		cAMP, adenylate cyclase, kinases)	
	4	Organ Function Tests, Biochemical	15L
		Assessments and Changes in Endocrine	
		Disorders	
	4.1	Organ Function Tests	2L
	4.1.1	Liver Function test – Bilirubin (direct and indirect), SGPT, SGOT, ALP, Prothrombin time	
	4.1.2	Renal Function test - Urea clearance test,	3L
		Creatinine clearance test, Test of renal ability to	
		excrete acid, Intravenous pyelography,	
IV	4.1.3	Radioactive renogram	3L
	4.1.3	Gastric Function test – Examination of resting contents	SL
	4.1.4	Pancreatic function test – Serum amylase activity,	
		GTT	
	4.1.5	Cardiac Profile – Cardiac biomarkers to diagnose	3L
		heart attack, Serum cholesterol and triglycerides	
		test	
	4.2	Biochemical assessment and changes in	4L
		Endocrine disorder (Pituitary, Thyroid, Adrenal	
		Medulla, Adrenal Cortex, Ovaries , testes)	_
		Practicals – RUSBCHP603	1.5 Credits
	1	Estimation of RBC count by Haemocytometer	
	2	Estimation of iron by Wong's method	
	3	Bile Analysis: Detection of Bilirubin & Bile salts	
	4	HCG based pregnancy test	
	5	Clinical analysis of CSF – glucose, proteins,	
	6	chlorides Liver Function Tests –	
		a) Estimation of serum ALT and AST	
		b) Estimation of total and direct bilirubin	
	7	Renal Function tests –	
		a) Creatinine clearance test	
		b) Urea clearance test	
	8	Estimation of serum amylase activity	

- 1. Harpers Illustrated Biochemistry 30th Edition
- 2. Burtis, C.A., Awood, E.R. and Bruns, D.E. TIETZ Text book of Clinical Chemistry and Molecular Diagnosis, 4th Ed. Elsevier.
- 3. Bishop, M.L., Fody, E.P and Schoeff, L. Clinical Chemistry- Principles, Procedures, Correlations. 5th Ed. Lippincort Willimy & Wilkins.
- 4. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 5. Henry Richard et al Clinical Chemistry, Principles and Techniques, 2nd edition, Harper and Row, New York
- 6. Kamal SH Clinical Biochemistry for Medical Technologies, Churchill Livingston, London
- 7. Todd et al Clinical Diagnosis and Management, 17th edition, WB Saunders, Philadelphia
- 8. Gill CV Short cases in clinical biochemistry, Churchill Livingston, Edinburgh,
- 9. Bayens Dominiezak Medical biochemistry, Mosby Publishers, Harcourt
- 10. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 11. Biochemical methods by S Sadashivam & A ManIckam, New Age International publisher.

Course Title: Nutritional Biochemistry

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Realize the importance of balanced diet and other parameters in maintaining it.
CO 2	Explore the functions of macronutrients & micronutrients and to examine the clinical and biochemical effects of its depletion.
CO 3	Examine the biochemical, physiological and clinical impact of inadequate intakes of specific nutrients.
CO 4	Develop a keen insight into interrelationship between genes and nutrients.
CO 5	Acquaint the importance of nutrition in health and study the main features of carbohydrates, proteins, lipids and minerals.
CO 6	Familiarize newer concepts of dietary management of various disorders and disease.
CO 7	Select biochemical techniques relevant in nutritional biochemical research
CO 8	Provide an understanding of biochemistry and explore the biochemical activity in the human body of nutrients and food constituents.

Course	Unit	Course/ Unit Title	Credits/
Code/		Nutritional Biochemistry	Lectures
Unit		RUSBCH604	2.5 Credits
	1	Introduction to Nutrition	15L
	1.1.1	Introduction to Human nutrition & energy supply	2L
	1.1.2	Measurement of energy content of food-	
		Calorific value of different biomolecules & mixed	
		diet,	
		Determination of calorific value using bomb	
		Calorimeter (Principle & Working)	
	1.2	Respiratory quotient of food	2L
	1.3	Measurement of energy expenditure	
		Basal metabolic rate- Definition, Measurement,	
		factors affecting BMR & its significance	
	1,4	Specific dynamic action of food- Definition,	1L
		Mechanism & its significance	
	1.5	Sources, Daily requirement & Nutritional	4L
		importance of biomolecules	
	1.5.1	Carbohydrates- Concept of Glycemic Index of food	
		(Graph), Importance of fiber (Complex	
		carbohydrate) in nutrition	
	1.5.2	Lipids-Role of essential fatty acids	
		Proteins- Essential amino acids, Nitrogen Balance	
	1.5.3	(Positive, Negative Nitrogen balance & factors	
		affecting)	
	1.6	Assessment of nutritive value of protein	3L
	1.6.1	Protein efficiency ratio	
	1.6.2	Biological value of protein	
	1.6.3	Net protein utilization	
	1.6.4	Chemical score	
	1.6.5	Mutual supplementation of protein	
	1.7	Recommended Dietary allowances (RDA)-	1L
		Definition, Factors affecting RDA, RDA for adult	
	1.8	Balance diet - Concept & significance, Designing	2L
		diet for different subjects (infants, toddlers,	
		adolescents, adults, geriatric, diseased state)	
	1.9	Numericals based on above concepts	
II	2	Macroelements	15L
	2.1	Biochemistry of macroelements	3L

	2.2	Sources, Recommended daily allowances,	3L
		Absorption, transport, excretion, Biochemical	
		significance & Disorders related to:	
	2.2.1	Calcium	3L
	2.2.2	Phosphorous	
	2.2.3	Magnesium	3L
	2.2.4	Sodium	
	2.2.5	Potassium	3L
	2.2.6	Chlorine	
	2.2.7	Sulphur	
	3	Microelements	15L
	3.1	Biochemistry of microelements	2L
	3.2	Sources, Recommended daily allowances,	3L
		Biochemical significance & Disorders related to:	
	3.2.1	Copper	3L
	3.2.2	Iodine	
III	3.2.3	Manganese	3L
	3.2.4	Zinc	
	3.2.5	Molybdenum	3L
	3.2.6	Cobalt	
	3.2.7	Fluorine	
	3.2.8	Selenium	1L
	4	Nutrigenomics, Nutritional disorders and	15L
OX		Antinutritional Factors	
	4.1	Nutrient-Gene Interaction	2L
	4.2	Drug-Nutrient Interaction	
	4.3	Obesity, Brown and White Adipose Tissue,	2L
		Specific dynamic action factors affecting thermic	
		effect of food.	
	4.4	Role of Leptin, Ghrenin, Adiponectin in food intake.	2L
	4.5	Pathophysiology of Nutritional disorders	2L
IV	4.5.1	Nutritional disorders of carbohydrate- Obesity,	
		Non-Insulin dependent diabetes mellitus, Lactose	
		intolerance, Celiac disease, Dental carries	
	4.5.2	Nutritional disorders of proteins- Protein energy	2L
		Malnutrition (Kwashiorker, Marasmus & Marasmic	
		kwashiorkor)	
	4.5.3	Nutritional disorders related to lipids – Essential	2L
		fatty acid deficiency, cholesterol (Good vs Bad),	
		Atherosclerosis & Arteriosclerosis	
	4.5.4	Eating disorders – Bulimia nervosa, Anorexia	2L
		nervosa	
L			

4.6	Antinutritional factors – Phytin, oxalates, tannins,	1L
	trypsin inhibitors, soluble and non-soluble NSPs	
	Practicals – RUSBCHP604	1.5 Credits
1	Anthropometric measurements	
2	Isolation of casein from milk	
3	Extraction of albumins and globulins from egg white	
4	Isolation of lipids from egg yolk and separation by TLC.	
5	Estimation of Calcium by EDTA method	
6	Estimation of phosphorus by Fiske Subarrow method	
7	Estimation of copper by the Isoamyl alcohol method	
8	Survey on nutritional disorders and its statistical analysis	

- Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York)
- 2. Human nutrition and dietetics by Davidson, S. et al.; Churchill Livingstone Publishers.
- 3. Nutrition and dietetics by Joshi, Shubhangini A.; Tata McGraw and Hill publishers
- 4. Nutrition Science by Srilakshmi, B.; New Age International publishers
- 5. Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications.
- 6. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications..
- 7. Principles of Nutritional Assessment (2005) Rosalind Gibson. Oxford University Press.
- 8. Nutritional Biochemistry: Tom Brody.
- 9. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 10. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 11. Introduction to Human nutrition, second edition, Edited on behalf of The Nutrition Society by Michael J Gibney, Susan A Lanham-New, Aedin Cassidy, Hester H Vorster Wiley Blackwell Publications

Modality of Assessment (SEMESTER VI)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Evaluation type			
One Assignment/poster presentation/Model making/Quiz	20		
One class Test (multiple choice questions / subjective)	20		
TOTAL	40		
	One Assignment/poster presentation/Model making/Quiz One class Test (multiple choice questions / subjective)		

B) External Examination- 60%- 60 Marks

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions
			Based on
Q1. A	Any 1 out of 2	03	UNIT
Q1. B	Any 2 out of 3	06	Oldin
Q2. A	Any 1 out of 2	03	UNIT II
Q2. B	Any 2 out of 3	06	ONTH
Q3. A	Any 1 out of 2	03	UNIT III
Q3. B	Any 2 out of 3	06	ONIT III
Q4. A	Any 1 out of 2	03	UNIT IV
Q4. B	Any 2 out of 3	06	OIIII IV
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester VI

Course	601		-	6	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	6	03		6	04		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100
