Resolution No. AC/II(23-24).2.RUS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: SYBSc

Program Code: RUSMJBCH

As per the guidelines of National Education Policy

2020 - Academic year 2024-25)

(Choice Based Credit System)

GRADUATE ATTRIBUTES

S.P. Mandali's Ramnrain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelor's Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Bachelor's Degree in SCIENCE program will be
	able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive manner
	and apply the skills acquired in their chosen discipline. Interpret scientific
	ideas and relate its interconnectedness to various fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options for
	practical demonstrations, illustrate work plans and execute them, organise
	data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge upgradation.
	Apply relevant information so gathered for analysis and communication using
	appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a
	scientific problem, construct and execute a project plan and analyse results.
GA 5	Take complex challenges, work responsibly and independently, as well as in
	cohesion with a team for completion of a task. Communicate effectively,
	convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different cultural
	groups. Disseminate scientific knowledge effectively for upliftment of the
2	society.
GA7	Follow ethical practices at workplace and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues and
	explore sustainable solutions for it.
GA 8	Keep abreast with current scientific developments in the specific discipline
	and adapt to technological advancements for better application of scientific
	knowledge as a lifelong learner

PROGRAM OUTCOMES

PO	Description			
	A student completing Bachelor's Degree in SCIENCE program in			
	the subject of BIOCHEMISTRY will be able to:			
PO 1	Achieve better understanding of the major thrust areas of the			
	disciplines like Chemistry of Biomolecules & their metabolism, Cell			
	biology (Basics, Membrane biochemistry, Cancer), Enzymology,			
	Genetics, Plant Biochemistry, Pharmacology, Microbiology &			
	Immunology.			
PO 2	Gain acumen of the fundamental biochemical processes occurring			
	at the molecular and gene level.			
PO 3	Understand the role of Biochemistry in food and human nutrition			
PO 4	Get insights into multiple important analytical tools for Biochemical			
	testing and apply contextual knowledge and tools of biochemical			
	research for problems solving.			
PO 5	Acquire and empower technical knowledge by connecting			
	disciplinary and interdisciplinary aspects of biochemistry.			
PO 6	Compile and interpret Biological data using Biostatistics and			
	Bioinformatics tools.			
PO 7	Express ideas persuasively through scientific writing and oral			
	presentation which will help in the development of the leadership			
	qualities.			
PO 8	Possess scientific temperament by research project-based learning.			
PO 9	Procure hands-on real time experience in industries.			
PO 10	Get exposure to the strong theoretical and practical understanding			
81	of various dimensions of Biochemistry and take up research-oriented			
	courses in the fields of Biochemistry, Nutrition & Dietetics, Molecular			
	Biology, etc.			

CREDIT STRUCTURE BSc

Semester	Subject 1 Subject		GE/ OE course (Across	Vocational and Skill Enhancement	Ability Enhancement	OJT/FP/CE PCC. RP	Total Credits	
	DSC	DSE	_	disciplines)	Course (VSC) Course/ VEC/IKS & SEC		,	
1	4		4	4 (2*2)	VSC-2 + SEC -2	AEC- 2 (CSK) + VEC- 2 (Env Sc.) + IKS-2		22
2	4		4	4 (2*2)	VSC-2 + SEC-2	AEC-2 (CSK)+ VEC-2 (Understanding India)	CC-2	22
Total	8		8	8	8	10	2	44
Exit option: award of UG certificate in Major with 44 credits and an additional 4 credit Core NSQ course/ Internship or Continue with Major and Minor						NSQF		
3	Major 8		Minor 4	2	VSC-2	AEC-2 MIL	FP -2, CC-2	22
4	Major 8		Minor 4	2	SEC-2	AEC-2 MIL	CEP-2, CC-2	22
Total	16		8	4	4	4	8	44
Exit option: award of UG Diploma in Major with 88 credits and an additional 4 credit Core NSQF co Internship or Continue with Major and Minor						F course/		
5	DSC 12	DSE 4	Minor 2		VSC-2		CEP/FP- 2	22
6	DSC 12	DSE 4	Minor 2				OJT-4	22
Total	24	8	4		2		6	44
Exit option: award of UG Degree in Major with 132 credits or Continue with Major for Honours/ Research								

 \sim

Semester III

Course Code: RUSMJBCHO201

Course Title: Enzymology

Type of course: Discipline Specific Core Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Have a deeper insight in to the fundamentals enzyme properties,		
	nomenclatures, characteristics and mechanisms		
CO 2	Describe structure, functions and the mechanism of action of		
	enzymes. Learning kinetics of enzyme catalysed reactions and		
	enzyme inhibitions and regulatory process, Enzyme activity, Enzyme		
	Units, Specific activity		
CO 3	Apply biochemical calculation for enzyme kinetics.		
CO 4	Discuss the factors affecting enzymatic reactions.		
CO 5	Describe the concepts of co-operative behaviour, enzyme inhibition		
	and allosteric regulation		
CO 6	Compare methods for production, purification, characterization and		
	immobilization of enzymes.		
CO 7	Describe the major applications of enzymes in industry, understand		
	the principles of enzyme immobilisation techniques and enzyme		
	extraction procedures		
CO 8	Develop new ideas for the development of enzyme-based diagnostic		
	kits		
CO 9	Discuss various application of enzymes that can benefit human life		
CO 10	Discover the current and future trends of applying enzyme		
.2	technology for the commercialization purpose of biotechnological		
	products.		
	•		

Course	Unit	Course/ Unit Title	Credits/
Code		Enzymology	Hours
		RUSMJBCHO201	3 / 45 Hours
	1	Introduction to enzymes	15
	1	Introduction to enzymology	
	1.1	Understanding the basic terminology in	
	enzymology Enzyme, Apoenzyme, Holoenzyme, Prosthetic group, Active site, Turnover number,		C.V.
			10
	Specific activity, Katal, IU, Coenzyme and Cofactor		
	1.1.1	Proteolytic cleavage of zymogens and enzyme	
		denaturation	r
	1.1.2	Classification of enzyme- IUB system	
	1.2	Principle types of reactions catalysed by enzymes	
	1.3	Group transfer reactions – Acyl group transfer,	
		Phosphoryl group transfer, Glycosyl group transfer	
1	1.3.1	Oxido-reduction reactions	
•	1.3.2	Elimination, isomerization and rearrangement	
		reactions	
	1.3.3Enzyme specificity1.4Theories of specificity of enzyme: Fischer's, lock &		
		key and Koshland's, induced fit theories	
	1.4.1	Characteristics of enzymes and enzyme substrate	
		complex	
	1.4.2 Concept of active center, binding sites, Stereo		
		specificity and ES complex formation	
	1.4.3 Enzyme activity		
	1.5 Factors affecting enzyme activity		
	1.5.1 Concept of activation energy and transition state		
	theory		15
	2 Enzyme – Kinetics, regulation, inhibition		15
A.	2.1	Derivation of Michaelis - Menten equation and	
~	2.1.1	Lineweaver Burke equation and Graphical	
procedures for mo		procedures for monosubstrate reactions	
п	II 2.1.2 Significance of Vmax & Km 2.2 Enzyme regulation		
2.2.1 Intr		Introduction & its importance	
	2.2.2 Types of regulatory mechanisms- Product		
	inhibition. Feedback		
	2.3	Enzyme inhibition	

		-	
	2.3.1	Types of inhibitors- Competitive, Non-competitive	
		and Uncompetitive, and their mode of action and	
		experimental determination considering suitable	
		example.	
	2.3.2	Graphical understanding of effect of different	
		inhibitors on enzyme kinetics (Use of LB Plot)	
	2.3.3	Numericals based on the above concepts	
	3	Immobilized enzymes and Application of	15
		enzymes	
	3.1	Immobilized enzymes	
	3.1.1	Introduction	
	3.1.2	Importance of immobilization	
	3.1.3	Methods of immobilization- Ionic bonding,	
		Adsorption, Covalent bonding (based on R group	
		of amino acids), Microencapsulation and Gel	
		entrapment	
	3.1.4	Enzyme extraction and optimum conditions,	
		kinetics of immobilized enzyme	
	3.1.5	Industrial examples related to the technique	
	3.1.6	Problems associated with enzyme immobilization	
	3.2	Isoenzymes	
	3.3	Application of enzymes	
	3.3.1	Enzyme immunoassay (HRP)	

Practical

Sr. No	Course code- RUSMJBCHPO201	1 Credit
	Practical Title- Practicals based on theory DSC I	
1	Determination of optimum pH of β-Amylase	
2	Determination of optimum temperature of β-Amylase	
3	Determination of Km and Vmax of β-Amylase	
4	Assay to determine enzyme activity and specific activity	
5	Study the effect of inhibitor on β-Amylase	
6	Demonstration of separation of isoenzymes of LDH by	
20	electrophoresis	

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- 3. Textbook of medical physiology A. C. Gyton, and J. E Hall Saunders Elsevier **Publications**
- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action - Daniel Purich
- 5. Medical Biochemistry Ramakrishnan (2012)
- 6. Molecular and cellular enzymology Jeannine Yon-Kahn, G. Hervé
- 7. Biochemical methods S Sadashivam and A Manickam New Age International A age Inte publishers
 - 8. Laboratory Manual in Biochemistry J. Jayaraman New Age International

Course Code: RUSMJBCHO202

Course Title: Basics of Genetics

Type of course: Discipline Specific Core Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Learn basic concepts of genetics and transmission of genetic
	information.
CO 2	Acquire knowledge about Organization of DNA in genome
CO 3	Strengthen the fundamentals of Mendelian and neo-Mendelian
	genetics.
CO 4	Explain derivatives from Mendel's model of the inheritance of traits.
CO 5	Learn and apply concepts like epistasis, and Pedigree analysis which
	will be helpful in competitive examinations
CO 6	Enlist different types of mutations, agents causing mutations and
	disorders resulting from mutations.
CO 7	Recognize normal and abnormal karyotypes, describing the
	abnormalities in chromosomal number.
CO 8	Study of Human Pedigree analysis in understanding the inheritance
	of genes in humans

Joi Human F of genes in human

Course	rse Unit Course/ Unit Title		Credits/
Code	Basics of Genetics		Hours
		RUSMJBCHO202	3 / 45 Hours
	1	Genes & Chromosomes	15
	1.1	Prokaryotic Genome: Organization of circular	
		chromosome	<i>.</i>
	1.2.1	Eukaryotic chromosomes, Unique and repetitive	Ċ
		sequences of DNA, Organization of DNA into	1.0
		chromosomes (upto Solenoid structure)	
	1.2.2	DNA supercoiling, Topoismerase, Chromatin	
		structure, Euchromatin, Heterochromatin, structure	
		of condensed chromatin, Nucleosomes	
_		[Centromere, kinetochrome, telomere], cohesion	
I		protein, Acetylation & deacetylation of histories,	
		Role of Telomerase	
	1.3.1	Comparison of chromosomal structure in	
	1 0 0	prokaryotes and eukaryotes	
	1.3.2	Lampbrush & polytene chromosomes, Cot curves	
		and its significance, C-value paradox	
	1.4.1	I ransformation: Definition and transformation in	
	1.1.0	S.pneumoniae	
	1.4.2	I ransoluction: Definition; Explain general features	
	4.4.0	with one example	
	1.4.3	Conjugation: Mechanism, F+, F- and Hir strain	15
	2	Introduction Concept of allelos, genetics	15
	2.1	Phonotype	
	221	Monohybrid cross- principle of segregation	
	2.2.1	Confirmation of principle using back cross	
.5	222	Dibybrid cross- principle of independent	
	<i>L.L.L</i>	assortment	
A.	23	Deviation from Mendelian genetics	
	2.3.1	Multiple allele- ABO blood group. Drosophila eve	
*		colour. Relation of multiple allele with molecular	
		genetics	
	2.3.2	Inheritance pattern of single gene- Wild type allele,	
		Mutant allele, Dominant mutant allele & their effect	
		on phenotype	
	2.4	Numericals based on above concepts	
	2.5	Non –Mendelian inheritance	

	2.5.1	Molecular mechanism of Incomplete dominance,		
	252			
2.5.2		Enistasis & Environmental effect on phenotype		
2.5.5		Sov linked inheritance. Sov influenced inheritance		
	2.3.4	8 Sox limited inheritance		
	255	Allelic effects- Pleiotropy, Polygenic inheritance		
2.5.6		Maternal gone offect. Maternal inheritance &		
2.5.0 Watemai gene ellect, Watemai innentance &				
	3	Mutations & Chromosomal Basis of Inheritance	15	
	3	Mutations & Childhosomal Dasis of inneritance		
	311	Types of mutations	X	
	312	Physical chemical and Biological agents causing		
	5.1.2	mutations	·	
	313	Reverse mutations Mutagenesis Ames test		
	3.1.5	Chromosomal aberration		
	3.2	Variations in chromosome structure - inversions		
	0.2.1	deletions, duplications and translocations		
	322	Variations in chromosome number - Euploidy and		
	0.2.2	aneuploidy (Autosomal and Sex chromosomes)		
	33	Syndromes resulting from chromosomal		
ш	010	abnormalities		
	3.3.1	Monosomies (Turner syndrome)		
	3.3.2	Disomies and trisomies (Down Syndrome,	1	
		Klinefelter's syndrome)		
	3.3.3	Cri-du-chat syndrome, Philadelphia chromosome		
	3.3.4	Chromosomal Microdeletions – Prader-Willi		
		Syndrome & Angelman Syndrome		
	3.4	Human Pedigree Analysis		
	3.4.1	Standard symbols used in pedigree analysis		
	3.4.2	Applications of pedigree analysis – Autosomal		
.5	7	recessive and dominant traits, X-linked recessive		
		and dominant traits, Y-linked traits		
Pr'	3.4.3	Problems based on this concept		

Practical

Sr. No	Course code- RUSMJBCHPO202	1 Credit
	Practical Title- Practicals based on theory DSC II	
1	Visualization of nuclear fraction by acetocarmine stain	
2	Cytochemical staining of RNA by Methyl Green Pyronin	
3	Demonstration of induction of polyploidy in onion roots	
4	Problems on Mendelian genetics –Mono & dihybrid cross,	
	Back cross, Test cross	
5	Isolation and spooling of DNA from onion/ moong	
6	Study of abnormal human karyotype	
7	Study of human pedigrees	

- 1. Voet, D. and Voet, J.G. (2004) Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA. Biochemistry by Zubay, Geoffrey L.; Wm. C. Brown publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Peter J. Russel , i-Genetics
- 4. Benamin Lewin, Gene VII, Oxford University Press
- 5. M.W. Strickberger, Genetics
- Biochemical methods by S. Sadashivam & A. Minackam, New Age International publisher.Experiments in Molecular Biology - Biochemical Applications - Zachary F. Burton, Jon M. Kaguni
- 7. Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston : Benjamin Cummings / Pearson, ©2011
- 8. Fundamentals of Cell and Molecular Genetics by Arvind Kumar Misra
- 9. Genetics From Genes to Genomes by Leland Hartwell, Michael L. Goldberg, Janice Fischer, Leroy Hood
- 10. Molecular Biology of the Gene: Watson, Baker, Bell, Gann, Levine, Losick; Pearson Benjamin Cummings & CSHL Press
- 11. Gene cloning & DNA analysis: an introduction; seventh edition; T A Brown; Wiley Blackwell publications

Modality of Assessment: Discipline Specific Core Course (3 Credit Theory Course for BSc) Semester III

DSC I and II

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks **Semester End Theory Examination:**

- 1. Duration These examinations shall be of One hour and 30 Minutes duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on	
Q1.	Any 3 out of 5	15	UNIT I	
Q2.	Any 3 out of 5	15	UNIT II	
Q3.	Any 3 out of 5	15	UNIT III	
	TOTAL	45		
DSC I and II				

DSC I and II

Semester End Practical Examination:

Practical Examination Pattern:

	Particulars	Marks
1	Laboratory work	20
2	Viva & Journal	05
	TOTAL	25

4,

Semester IV

Course Code: RUSMJBCHE211

Course Title: Membrane Biochemistry

Type of course: Discipline Specific Core Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Understand the importance of carbohydrates, lipids and proteins as		
	a structural component of biomembranes.		
CO 2	Summarize the composition and structure of biomembranes,		
	transport mechanisms across biological membranes.		
CO 3	Illustrate the mechanism of oxidative phosphorylation,		
	photophosphorylation and basic concept of Bioenergetics		
CO 4	Learn the concept and mechanism of ATP synthesis		
CO 5	Describe factors that contribute to cancer development, discuss		
	cancer prevention and currently available therapeutic treatments.		
CO 6	Develop an understanding on various genetic and molecular		
	changes which takes place during transformation into malignant		
	cells.		

RAMMARAM

Course	Unit	Course/ Unit Title	Credits/
Code		Membrane Biochemistry	Hours
		RUSMJBCHE211	3 / 45 Hours
	1 Biomembranes & Cell Surface		
	1.1	Overview of membrane functions	
	1.2	Fluid mosaic model	
	1.3	Chemical Composition of Membranes	\sim
	1.3.1	Membrane lipids (Phospholipids, Glycolipids,	10
		sterols (Cholesterol), Lipid rafts	
	1.3.2	Membrane proteins - Classification- Peripheral	X
1		Proteins, Integral Membrane Proteins and Lipid	
-		Anchored proteins	
		Peripheral Proteins- Spectrin on RBC	
		Integral Membrane Proteins- Glycophorin A on	
		RBC	
		Lipid-Anchored proteins- Role of GPI anchored	
	4.0.0	Mambrana aarbahydrata	
	1.3.3 Membrane carbohydrate – Role of membrane		
	2	Glycoproteins Membrane Transport and Vesicular Transport	15
	21	Introduction to the transport mechanism across cell	15
	2.1	membrane	
	 2.2 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.3 Ion channels- Ligand gated, mechanical gated, 		
II	1	Voltage gated	
	2.4.1	Primary Active transport	
		ATPases pump- Na ⁺ -K ⁺ Pump, ABC transporter	
	2.4.2	Secondary active transports	
2	Symport (Mechanism of Absorption of peptides by eneterocytes)2.5Specialized ion channels- Aquaporins		
25			
	2.6	Antiport -Absorption of peptides by eneterocytes,	
	3	Bioenergetics & Oxidative Phosphorylation	15
	3.1.1 Principle of Bioenergetics		
111	3.1.2	Importance of thermodynamics, concept of Gibb's	
		nee energy, enthalpy, entropy, Standard free	
		energy change and equilibrium constant	

3.2	Oxidative phosphorylation
	Electron transfer reactions in mitochondrion
	(Complexes I to IV; Q cycle in Complex III)
3.3	Structure of ATP synthase and ATP synthesis
	Models for ATP synthesis - chemiosmotic model &
	Rotational Catalysis
3.4	Inhibitors & Uncouplers of ETC and ATP synthesis

Practicals

Sr No	Course code- RUSMJBCHPE211 1 Credit
	Practical Title- Practicals based on theory DSC I
1	Osmosis across semi-permeable membrane
2	Effect of hypotonic, isotonic and hypertonic solutions on the cells
3	Effect of temperature and molecular weight on diffusion
4	Effect of organic solvent on cell membrane
5	Staining and visualization of mitochondria by Janus Green Stain
6	Mitochondrial respiration and effect of different Inhibitors for ETC (Dry lab)
7	Sums based on Bioenergetics

- 1. Jain MK. Introduction to Biological membranes, John Wiley and sons New York, 1988
- 2. Vance DE & Vance JE, Biochemistry of lipids and Biomembranes, Benzamin Cummings 1985
- 3. Biomembranes by RB Gennis Springer Verlag 2012 2nd edition
- 4. Jones MN & Chapman D. Micelles monolayers and biomembranes Wiley-Lis New York, 1995
- 5. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 6. Biochemistry by Voet & Voet, International student version
- 7. Lehninger's Principles of Biochemistry by David L. Nelson
- 8. Introductory Practical Biochemistry by Sawhney
- 9. Practical Biochemistry by David Plummer
- 10. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 11. Principles of Genetics by D. Peter Snustad, Michael J. Simmons
- 12. Concepts of Genetics by William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian

Course Code: RUSMJBCHE212

Course Title: Microbiology & Industrial Biotechnology

Type of course: Discipline Specific Core Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Demonstrate practical skills in microscopy and handling techniques		
	related to it and staining procedures		
CO 2	Apprehend the basic microbial structure and function and study the		
	structural similarities and differences among various physiological		
	groups of microorganisms		
CO 3	Know various Culture media and their applications in order to apply		
	them for the industrial production		
CO 4	Acquire information about large scale production and purification of		
	various industrially important produces.		
CO 5	Appreciate how microbiology is applied in manufacture of industrial		
	products		
CO 6	Appreciate the different types of fermentation processes		
CO 7	Master aseptic techniques and be able to perform routine culture		
	handling tasks safely and effectively		
CO 8	Know about design of bioreactors, factors affecting growth and		
	production, heat transfer, oxygen transfer and Understand the		
	rationale in medium formulation & design for microbial fermentation		
CO 9	Procure information about types and applications of biosensors in the		
	field of biology		
CO 10	Appreciate the technological advances in the field of Biosensors and		
10,	get fascinated with the advances in the research field and try to		
	pursue them.		
C O 11	Quantitative estimation of biomolecules like vitamins & antibiotics will		
	help in understanding their efficacy		

Course	Unit	Course/ Unit Title	Credits/
Code		Microbiology & Industrial Biotechnology	Hours
		RUSMJBCHE212	3 / 45 Hours
	1	Microbiology & Fermentation Technology	15
	1.1	General characteristics (size, shape, and structure)	
		of Bacteria	
	1.2	Microbial Taxonomy: Microbial species and strains.	
		Classification of bacteria based on morphology	
(shape and flagella). staining reaction, nutrition and			
		extreme environment (extremophiles:	
		Thermophiles, Psychrophiles, Halophiles,	
		Magnetotactic, Radiation resistant organisms:	
I		examples with their application)	
	1.3	Bacterial cell wall: Structure and function,	
		components of peptidoglycan framework	
	1.4	Basics of fermentation	
	1.5	Types of fermentation processes based on the	
		products formed (biomass, enzymes, metabolites,	
		recombinant products, transformation process to	
		modify a product)	
	1.6	Stages of a typical fermentation process	
	1.7	Basic design of fermenter	
	2	Physicochemical Principles of food	15
	2.1	Introduction & Importance	
	2.2	Physical & chemical characteristics of food	
	2.3	Factors affecting physicochemical properties	
	2.4	Enzymatic reactions- softening, Oxidation	
		(Ascorbic acid & Phenolic oxidation) Glycolytic	
~	2	reaction, Hydrolytic reactions, pigmentation	
		(Cholorophylase) browning, Maillard reaction &	
		Caramelization reaction	
$\langle \cdot \rangle$	2.5	Chemical reactions-	
*		1. Lipid oxidation, non-enzymatic browning	
		2. Colour changes - Chlorophylls - Anthocyanins -	
		Carotenoids (lipid soluble compounds)	
		3. Flavour changes	
		4. Phenophytinisation -photo- oxidation. –	
		Oxidation –	
		Enzyme-induced oxidative breakdown of	
		unsaturated fatty acids	

Physicochemical changes in following food				
Changes in fruit ripening				
Comparison between Raw vs Ripe Fruit2.7Changes in meat- Post Mortem Changes in Meat				
Lipid oxidation				
Non enzymatic hydrolysis by Haeme protein				
Autolytic enzyme spoilage				
Industrial Biotechnology	15			
Introduction				
Recovery and purification of fermented products				
Industrial synthesis of different products obtained				
from Bioprocess technology				
Penicillin, Vit B12, Cheese, Amylase, Protease,				
Ethanol, Acetic Acid				
Ethanol, Acetic Acid Biosensors, Features of biosensors				
Ethanol, Acetic Acid Biosensors, Features of biosensors Types of Biosensors based on:				
Ethanol, Acetic Acid Biosensors, Features of biosensors Types of Biosensors based on: Enzymes (environmental monitoring)				
Ethanol, Acetic Acid Biosensors, Features of biosensors Types of Biosensors based on: Enzymes (environmental monitoring) Antibodies (detection of pathogens)				
	 Physicochemical changes in following food Changes in fruit ripening Comparison between Raw vs Ripe Fruit Changes in meat- Post Mortem Changes in Meat (Pre-rigor stage, Rigor Mortis, Post Rigor Stage Lipid oxidation Non enzymatic hydrolysis by Haeme protein Autolytic enzyme spoilage Industrial Biotechnology Introduction Recovery and purification of fermented products Industrial synthesis of different products obtained from Bioprocess technology Penicillin, Vit B₁₂, Cheese, Amylase, Protease, 			

Practicals

Sr. No	Course code- RUSMJBCHPE212	1 Credit
	Practical Title- Practicals based on theory DSC II	
1	Basics of Microbiology Techniques and plate exposure technique	
2	Study of microbial growth curve	
3	A study of culture inoculation methods – Pour plate, Spread	
	plate & Streak plate	
4	Determination of percentage purity of acetic acid in vinegar	
	solution	
5	Bioassay of penicillin by agar diffusion method	
6	Assessment of factors affecting physico-chemical properties	
	of food	
7	Estimation of anthocyanin content in vegetable	
8	Study of different stages of sugar caramelization	

- Microbiology M. Pelczar, E.C.S. Chan and M.R. Krieg McGraw Hill Inc., 1. Singapore (1997).
- 2. General Microbiology, Vol. I & II – Powar, Daginawala – Himalaya Publishing House. (2015).
- General Microbiology Stanier, Adelberg, Ingraham The Macmillan Press, 3. London (1987)
- 4. Textbook of microbiology Surinder Kumar, Jaypee Medical publication
- 5. Industrial microbiology A.H. Patel Macmillan India Ltd.
- 6. Total Quality Assurance for the Food Industries WA Gould & RW Gould CTI Publications Inc., USA 1988
- 7. Enzymes in food and beverage processing by Muthusamy Chandrasekaran, **CRC** Press
- 8. Enzymes in Food Processing by Tilak Nagodawithana, Gerald Reed and Steve Taylor, Academic Press
- Industrial microbiology L. E. Casida New age international publishers 9.
- 10. Microbial Biochemistry G. N. Cohen
- 11. Industrial Fermentation Paul Allen
- 12. Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Principles of fermentation technology 3rd edition, Elsevier publications
- 13. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- r-J., Auto RAMMARAMARA 14. Laboratory Manual in Biochemistry - J. Javaraman - New Age International

Modality of Assessment: Discipline Specific Core Course (3 Credit Theory Course for BSc) Semester IV

DSC I and II

C) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

D) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 3. Duration These examinations shall be of **One hour and 30 Minutes** duration.
- 4. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 5	15	UNIT I
Q2.	Any 3 out of 5	15	UNIT II
Q3.	Any 3 out of 5	15	UNIT III
	TOTAL	45	

DSC I and II

Semester End Practical Examination:

Practical Examination Pattern:

ARA

	Particulars	Marks
1	Laboratory work	20
2	Viva & Journal	05
	TOTAL	25