

PROGRAM OUTCOMES

PO	PO Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
PO 1	Recall and explain acquired scientific knowledge in a
	comprehensive manner and apply the skills acquired in their
	chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans
	and execute them, organise data and draw inferences.
PO 3	Explore and evaluate digital information and use it for
	knowledge upgradation. Apply relevant information so
	gathered for analysis and communication using appropriate
	digital tools.
PO 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a
	project plan and analyse results.
PO 5	Take complex challenges, work responsibly and
	independently, as well as in cohesion with a team for
	completion of a task. Communicate effectively, convincingly
	and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of
JK.	different cultural groups. Disseminate scientific knowledge
	effectively for upliftment of the society.
PO 7	Follow ethical practices at workplace and be unbiased and
× ·	critical in interpretation of scientific data. Understand the
	environmental issues and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the
	specific discipline and adapt to technological advancements
	for better application of scientific knowledge as a lifelong
	learner

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in SCIENCE program
	in the subject of BIOCHEMISTRY will be able to:
PSO 1	Achieve better understanding of the major thrust areas of the
	disciplines like Chemistry of Biomolecules & their
	metabolism, Cell biology (Basics, Membrane biochemistry,
	Cancer), Enzymology, Genetics, Plant Biochemistry,
	Pharmacology, Microbiology & Immunology.
PSO 2	Gain acumen of the fundamental biochemical processes
	occurring at the molecular and gene level.
PSO 3	Understand the role of Biochemistry in food, human nutrition
	and environmental science.
PSO 4	Get insights into multiple important analytical tools for
	Biochemical testing and apply contextual knowledge and
	tools of biochemical research for problems solving.
PSO 5	Acquire and empower technical knowledge by connecting
	disciplinary and interdisciplinary aspects of biochemistry.
PSO 6	Compile and interpret Biological data using Biostatistics and
	Bioinformatics tools.
PSO 7	Express ideas persuasively through scientific writing and
	oral presentation which will help in the development of the
	leadership qualities.
PSO 8	Possess scientific temperament by research project-based
	learning.
PSO 9	Procure hands-on real time experience in industries.
PSO 10	Get exposure to the strong theoretical and practical
	understanding of various dimensions of Biochemistry and
	take up research-oriented courses in the fields of
	Biochemistry, Nutrition & Dietetics, Molecular Biology, etc.

PROGRAM OUTLINE

Image: Code Code RUSBCH301 Analytical Techniques in Biochemistry 2 RUSBCH302 Enzymology 2 RUSBCH303 Metabolism I 2 RUSBCH9301 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCH404 Practicals based on RUSBCH401 1 RUSBCHP403 Practicals based on RUSBCH401 1 RUSBCHP403 Practicals based on RUSBCH403 1		SEM	COURSE	COURSE TITLE	CREDITS
III RUSBCH301 Analytical Techniques in Biochemistry 2 RUSBCH302 Enzymology 2 RUSBCH303 Metabolism I 2 RUSBCH303 Metabolism I 2 RUSBCH303 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCH401 Practicals based on RUSBCH401 1 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCH901 Practicals based on RUSBCH401 1 RUSBCHP403 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1			CODE		
SYBSC RUSBCH302 Enzymology 2 RUSBCHP301 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCH404 Practicals based on RUSBCH401 1 RUSBCH403 Metabolism II 2 RUSBCH404 Practicals based on RUSBCH401 1 RUSBCH9402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1					
SYBSc III RUSBCH303 Metabolism I 2 RUSBCHP301 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH302 1 RUSBCHP304 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH404 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1					
SYBSc III RUSBCHP301 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH302 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCH404 Practicals based on RUSBCH401 1 RUSBCH403 Metabolism II 2 RUSBCH404 Practicals based on RUSBCH402 1 RUSBCH403 Practicals based on RUSBCH402 1 RUSBCH404 Practicals based on RUSBCH402 1 RUSBCH403 Practicals based on RUSBCH402 1 RUSBCH403 Practicals based on RUSBCH403 1					
SYBSC RUSBCHP301 Practicals based on RUSBCH301 1 RUSBCHP302 Practicals based on RUSBCH302 1 RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1		_ III			
SYBSc RUSBCHP303 Practicals based on RUSBCH303 1 RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1					
SYBSC RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1					
IV RUSBCH401 Microbiology & Industrial Biotechnology 2 RUSBCH402 Plant Biochemistry 2 RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1	SYBSc		RUSBCHP303		_
IV RUSBCH403 Metabolism II 2 RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1	OTDOC		RUSBCH401	Microbiology & Industrial Biotechnology	2
IV RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1			RUSBCH402	Plant Biochemistry	2
RUSBCHP401 Practicals based on RUSBCH401 1 RUSBCHP402 Practicals based on RUSBCH402 1 RUSBCHP403 Practicals based on RUSBCH403 1		N/	RUSBCH403	Metabolism II	2
RUSBCHP403 Practicals based on RUSBCH403 1		IV	RUSBCHP401	Practicals based on RUSBCH401	1
RUIAAUTONON			RUSBCHP402	Practicals based on RUSBCH402	1
AMRUANTONON			RUSBCHP403	Practicals based on RUSBCH403	1
RAMMARAN					

Semester III

Course Code: RUSBCH301

Course Title: Analytical Techniques in Biochemistry

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Demonstrate broad knowledge in basic analytical instrumentation
	with deep knowledge in its core concepts and its applications.
CO 2	Understand the principle, Instrumentation, working of spectroscopic
	techniques (Flame photometry & AAS) and its applications in
	various research fields
CO 3	Acquire knowledge about the basics and latest developments in
	Biochemical investigation tools and importance of plant and animal
	model in biochemical investigation
CO 4	Demonstrate skill to explain about principle, Bioinstrumentation and
	applications of protein purification techniques like Electrophoresis
	(IEF, 2D PAGE) and Chromatography and their applications in
	various research fields.
CO 5	Acquire cognitive, technical and creative skills which enables
	students to gain an established knowledge and practice concerning
	basic analytical instrumentation and measurement techniques
CO 6	Capable to choose and apply suitable analytical technique to
	identify different biomolecules
CO 7	Develop skill in carrying out research projects by employing the
	basic biochemical and molecular techniques.
PAM	

Course	Unit	Course/ Unit Title	Credits/
Code/		Analytical Techniques in Biochemistry	Lectures
Unit		RUSBCH301	2 credits
	1	Spectroscopic techniques	15L
	1.1	Concept of Electromagnetic radiation,	2L
		Electromagnetic spectrum, Emission,	
		Luminescence, Scattering, Transmittance,	
		Absorbance	10
•	1.2	Flame Photometry	3L
	1.3	Principle, Components, Structure of flame,	2L
		Interferences in analysis, Applications	r
	1.4	Atomic Absorption Spectroscopy	5L
	1.5	Principle, Instrumentation and Applications	3L
	2	Biochemical Investigations	15L
	2.1	Approaches to and levels of biochemical	2L
		investigations	
	2.2	Whole animal and plant studies – the advantages	4L
		and disadvantages of model systems for	
		biochemical investigation (<i>E.coli</i> , Yeast,	
		Dictyostelium, C. elegans, Drosophila, Arabidopsis)	
	2.3	Organ & Tissue studies	3L
II	2.4	Isolated and cultured tissue and cell techniques :	
		isolation, culture and counting of cells	
	2.5	Cell Fractionation:	3L
	2.5.1	Cell rupture – solid shear, liquid shear, high	
		pressure, ultrasound, osmotic shock, chemical	
		treatment (enzyme, organic solvent), temperature	
	2.5.2	Choice of suspension medium (isotonic &	3L
		hypotonic solution, PBS) and separation methods	
	2.5.3	Problems of cell fractionation	4.51
	3	Protein Purification Techniques	15L
2	3.1	Protein Isolation Selection of a Protein Source	3L
		Methods of Solubilization Stabilization of Proteins	
III		Assay of Proteins	
	3.2	General Strategy of Protein Purification	3L
	5.2	Solubilities of Proteins	JL
		Effects of Salt Concentrations	
		Effects of Organic Solvents	

	Effects of pH	
	Crystallization	
3.3	Ultracentrifugation- Preparative Ultracentrifugation	1L
3.4	Chromatographic Separations- Gel Filtration	4L
	Chromatography, Ion Exchange Chromatography,	
	Affinity Chromatography	
3.5	Electrophoresis- Gel Electrophoresis, SDS PAGE,	4L
	Isoelectric Focusing	
	Practicals – RUSBCHP301	1 Credit
1	Study of spectrophotometer	
2	Determination of absorption maxima (λmax)	
3	Estimation of glucose by DNSA method	
4	Estimation of proteins using Lowry method	
5	Plotting graphs using Excel	
6	Demonstration of flame photometer	
7	Demonstration of separation of protein by SDS	
	PAGE	
8	Separation of proteins by gel filtration	
	chromatography	
9	Demonstration of separation of proteins using	
	anion-exchange chromatography	
10	Ammonium sulphate fractionation of proteins	
11	Virtual lab – Study of model organisms in research	
12	Isolation & Partial purification of an enzyme (Cell	
	lysis, Centrifugation, salting out dialysis & size	
	exclusion chromatography)	

- 1. Principles & Techniques of Practical Biochemistry Wilson, Walker- Cambridge Univ. Press.
- 2. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 3. Analytical Biochemistry David Holme & Hazel Peck Pearson Education Ltd, England
- 4. Principles of Instrumental Analysis Douglas A. Skoog, F. James Holler, Stanley R. Crouch Thomson Brooks/Cole
- 5. Cell Biology: Essential techniques David Rickwood Wiley
- 6. Cell Separation A practical Approach D. Fisher, G E Francis and D Rickwood Oxford University Press
- 7. The Cell A Molecular Approach Geoffrey M. Cooper, 8th Edition, Sinauer Associates

New York Oxford, Oxford University Press

8. A Textbook of Biotechnology – R. C. Dubey – Chand Publications

- 9. Cell Biology, Four-Volume Set Cell Biology, Volume 1, Third Edition A Laboratory Handbook - Julio E. Celis
- 10. Subcellular Fractionation A Practical Approach (Practical Approach Series) J. M. Graham & D. Rickwood
- 11. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 12. Protein Purification: Principles, High Resolution Methods, and Applications (Methods of Biochemical Analysis), Jan-Christer Janson, 2011.
- 13. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 14. Laboratory Manual in Biochemistry J. Javaraman New Age International
- 15. An Introduction To Practical Biochemistry Plummer David
- . publish publ 16. Voet, D. and Voet, J.G. (2004) Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA. Biochemistry by Zubay, Geoffrey L.; Wm. C. Brown publishers

Course Code: RUSBCH302

Course Title: Enzymology

Academic year 2021-22

COURSE OUTCOMES:

COURSE	
OUTCOME	DESCRIPTION
CO 1	Have a deeper insight in to the fundamentals enzyme properties,
	nomenclatures, characteristics and mechanisms
CO 2	Describe structure, functions and the mechanism of action of
	enzymes. Learning kinetics of enzyme catalysed reactions and
	enzyme inhibitions and regulatory process, Enzyme activity,
	Enzyme Units, Specific activity
CO 3	Apply biochemical calculation for enzyme kinetics.
CO 4	Discuss the factors affecting enzymatic reactions.
CO 5	Describe the concepts of co-operative behaviour, enzyme inhibition
	and allosteric regulation
CO 6	Compare methods for production, purification, characterization and
	immobilization of enzymes.
CO 7	Describe the major applications of enzymes in industry, understand
	the principles of enzyme immobilisation techniques and enzyme
	extraction procedures
CO 8	Develop new ideas for the development of enzyme-based
	diagnostic kits
CO 9	Discuss various application of enzymes that can benefit human life
CO 10	Discover the current and future trends of applying enzyme
	technology for the commercialization purpose of biotechnological
Jr.	products.
RAM	

Course	Unit	Course/ Unit Title	Credits/
Code/		Enzymology	Lectures
Unit		RUSBCH302	2 credits
	1	Introduction to enzymes	15L
	1.1	Introduction to enzymology	4L
	1.1.1	Understanding the basic terminology in enzymology	
		Enzyme, Apoenzyme, Holoenzyme, Prosthetic	GH
		group, Active site, Turnover number, Specific	\sqrt{O}^{*}
		activity, Katal, IU, Coenzyme and Cofactor	
	1.1.2	Proteolytic cleavage of zymogens and enzyme	
		denaturation	
	1.2	Classification of enzyme- IUB system	
	1.3	Principle types of reactions catalysed by enzymes	4L
	1.3.1	Group transfer reactions - Acyl group transfer,	
		Phosphoryl group transfer, Glycosyl group transfer	
	1.3.2	Oxido-reduction reactions	
•	1.3.3	Elimination, isomerization and rearrangement	
		reactions	
	1.4	Enzyme specificity	4L
	1.4.1	Theories of specificity of enzyme: Fischer's, lock &	
		key and Koshland's, induced fit theories	
	1.4.2	Characteristics of enzymes and enzyme substrate	
		complex	
	1.4.3	Concept of active center, binding sites, Stereo	
		specificity and ES complex formation	
	1.5	Enzyme activity	3L
		Factors affecting enzyme activity	
	1.5.2	Concept of activation energy and transition state	
		theory	451
	2	Enzyme – kinetics, regulation, inhibition	15L
- DI-	2.1	Enzyme kinetics	4L
	2.1.1	Derivation of Michaelis - Menten equation and	
•		Lineweaver Burke equation and Graphical	
	2.1.2	procedures for monosubstrate reactions Significance of Vmax & Km	
	2.1.2	Enzyme regulation	4L
	2.2	Introduction & its importance	46
	2.2.1	Types of regulatory mechanisms- Product	
	2.2.2	inhibition, Feedback	
	2.3	Enzyme inhibition	4L
	2.0		4L

			1
	2.3.1	Types of inhibitors- Competitive, Non-competitive	
		and Uncompetitive, and their mode of action and	
		experimental determination considering suitable	
		example.	
	2.3.2	Graphical understanding of effect of different	
		inhibitors on enzyme kinetics (Use of LB Plot)	
	2.3.3	Numericals based on the above concepts	3L
	3	Immobilized enzymes and Application of	15L
		enzymes	
	3.1	Immobilized enzymes	74
	3.1.1	Introduction	
	3.1.2	Importance of immobilization	
	3.1.3	Methods of immobilization- Ionic bonding,	
		Adsorption, Covalent bonding (based on R group of	
		amino acids), Microencapsulation and Gel	
		entrapment	
111	3.1.4	Enzyme extraction and optimum conditions, kinetics	3L
		of immobilized enzyme	
	3.1.5	Industrial examples related to the technique	
	3.1.6	Problems associated with enzyme immobilization	
	3.2	Application of enzymes	3L
	3.2.1	Isoenzymes. Applications of enzymes in research.	
	3.2.2	Application of enzymes in diagnostics	
	3.2.3	(SGPT, SGOT, creatine kinase, alkaline and acid	2L
		phosphatases),	
	3.2.4	Enzyme immunoassay (HRP),	
		Practicals – RUSBCHP302	1 Credit
	1	Extraction of β -Amylase, Urease & Invertase from	
		suitable sources	
	2	Determination of optimum pH of β-Amylase	
	3	Determination of optimum temperature of β -	
7	71.	Amylase	
	4	Determination of Km and Vmax of β-Amylase	
	5	Assay to determine enzyme activity and specific	
Q-1		activity	
	6	Study the effect of inhibitor on β -Amylase	
	7	Immobilization of Yeast and its use in	
		determination of Invertase activity	
	8	Demonstration of separation of isoenzymes of LDH	
		by electrophoresis	

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- 3. Textbook of medical physiology A. C. Gyton, and J. E Hall Saunders Elsevier **Publications**
- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action - Daniel Purich
- 5. Medical Biochemistry Ramakrishnan (2012)
- 6. Molecular and cellular enzymology Jeannine Yon-Kahn, G. Hervé
- 7. Biochemical methods S Sadashivam and A Manickam New Age International Age In Age In Constant of the second publishers
 - 8. Laboratory Manual in Biochemistry J. Jayaraman New Age International

Course Code: RUSBCH303

Course Title: Metabolism I

Academic year 2021-22

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the overall concept of cellular metabolism – anabolic and
	catabolic pathways, energy storage and release, production of
	building blocks for macromolecule synthesis.
CO 2	Understand the relationship between the properties of
	macromolecules and cellular activities, cell metabolism and
	chemical composition.
CO 3	Illustrate the reactions involved in the metabolic pathways of
	biomolecules
CO 4	Explain glucose homeostasis (pathways and hormonal regulation).
	Discuss Krebs cycle, electron transport, and the pentose phosphate
	pathway
CO 5	Describe common pathways of amino acid catabolism to release
	ammonia (handled by the urea cycle) and carbon skeletons.
CO 6	Differentiate between ketogenic and glucogenic amino acids, and
	diseases resulting from defective catabolism (phenylketonuria,
	maple syrup urine disease) and biosynthesis of non-essential
	amino acids.
CO 7	Describe the structure, biosynthesis, oxidation and storage of fatty
	acids.
CO 8	Deeply understand the metabolic pathways of cholesterol
RAMM	

Course	Unit	Course/ Unit Title	Credits/
Code/		Metabolism I	Lectures
Unit		RUSBCH303	2 Credits
	1	Carbohydrate Metabolism	15L
	1.1	Overview of glucose metabolism	4L
	1.1.1	Glycolysis- Salient features, reactions,	
	1.1.2	Conversion of pyruvate to lactate & its significance	\sim
	1.1.3	Irreversible reactions of glycolysis	10
	1.1.4	Regulation of glycolysis	
	1.2	Conversion of pyruvate to Acetyl CoA- Role of	1L
		Pyruvate dehydrogenase complex & its regulation	r
I	1.3	Citric acid cycle- Pathway with reactions & its regulation	3L
	1.4	Glycogenolysis – [schematic – no structures, but with enzymes and coenzymes]	1L
	1.5	HMP shunt (Cellular location, sequence of	2L
		reactions, multifunctional nature)	
	1.6	Gluconeogenesis, Glycogenesis – [schematic – no	3L
		structures, but with enzymes and coenzymes]	
	1.7	Glyoxylate pathway	1L
	2	Amino acid metabolism	15L
	2.1.1	Chemical nature, functional groups and reactivity of amino acids	4L
	2.1.2	Reactions of amino acids: Deamination,	
		Transamination, Decarboxylation,	
		Transmethylation, Transdeamination,	
		Ammonia formation, transport and detoxification in	
II		brain and liver.	
	2.2	Urea cycle & its regulation	3L
	2.3	Metabolism of significant amino acids– Glycine,	4L
2	•	Phenylalanine, Tyrosine, Tryptophan	
25	2.4	Formation of specialized products from amino	4L
		acids and their functions-glutathione, creatine,	
		creatinine, biogenic amines (dopamine,	
		norepinephrine, GABA, Histamine)	
	3	Lipid metabolism	15L
III	3.1	Introduction to lipid metabolism	5L
	3.1.1	Lipid Digestion, Absorption, and Transport	

1		1
3.1.2	Fatty Acid Oxidation-Fatty Acid Activation,	
	Transport Across the Mitochondrial Membrane,	
	Beta-Oxidation	
3.1.3	Oxidation of Unsaturated Fatty Acids	
3.1.4	Oxidation of Odd-Chain Fatty Acids	
3.2	Ketone Bodies	2L
3.3	Fatty Acid Biosynthesis- Pathway Overview, Acetyl	3L
	CoA Carboxylase, Fatty Acid Synthase, Transport	
	of Mitochondrial Acetyl-CoA Into the Cytosol,	
	Elongases and Desaturases,	
3.4	Synthesis of Triacylglycerols	1L
3.5	Regulation of Fatty Acid Metabolism	1L
3.6	Cholesterol Metabolism- Cholesterol Biosynthesis,	3L
	Control of Cholesterol Biosynthesis and Transport,	
	Cholesterol Utilization	
	Practicals – RUSBCHP303	1 Credit
1	Estimation of glucose by the Folin-Wu method	
2	Estimation of glucose by the GOD-POD method	
3	Demonstration of glucose metabolism using	
	handheld glucometer	
4	Estimation of total serum proteins using Biuret	
	method	
5	Estimation of serum urea by diacetyl monoxime	
	method	
6	Demonstration of assay of glutamate	
	dehydrogenase	
7	Lipid Profile –	
	a) Estimation of total cholesterol and HDL	
	b) Estimation of Triglycerides	
0	c) Estimation of LDL by calculation	
8	Field trip to pathology lab/super-speciality hospitals	
\ Y T		

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Modality of Assessment (SEMESTER III)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

- B) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality) Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.
 - 1. Duration These examinations shall be of **02 HOURS** duration.
 - 2. Theory question paper pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	UNIT II
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 2 out of 3	04	UNIT III
Q3. B	Any 2 out of 3	06	
8	TOTAL	60	

Paper Pattern:

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

	Particulars	Practical I, II & III				
	Journal	05	-			
	Experimental tasks	15				
	Total	20				
			K G			
I Exa	Examination: 60%- 60 Marks					
er End Practical Examination:						
	Particulars	Practical I, II & III				

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Practical I, II & III
25
5
30

Overall Examination & Marks Distribution Pattern

Semester III

Course	301		302			303			Grand		
											Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total		
Theory	40	60	100	40	60	100	40	60	100	300	
Practicals	20	30	50	20	30	50	20	30	50	150	
<i>.............</i>											
× ·											

Semester IV

Course Code: RUSBCH401

Course Title: Microbiology & Industrial Biotechnology

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Demonstrate practical skills in microscopy and handling techniques
	related to it and staining procedures
CO 2	Apprehend the basic microbial structure and function and study the
	structural similarities and differences among various physiological
	groups of microorganisms
CO 3	Know various Culture media and their applications in order to apply
	them for the industrial production
CO 4	Acquire information about large scale production and purification of
	various industrially important produces.
CO 5	Appreciate how microbiology is applied in manufacture of industrial
	products
CO 6	Appreciate the different types of fermentation processes
CO 7	Master aseptic techniques and be able to perform routine culture
	handling tasks safely and effectively
CO 8	Know about design of bioreactors, factors affecting growth and
	production, heat transfer, oxygen transfer and Understand the
	rationale in medium formulation & design for microbial fermentation
CO 9	Procure information about types and applications of biosensors in
	the field of biology
CO 10	Appreciate the technological advances in the field of Biosensors
N.	and get fascinated with the advances in the research field and try to
05	pursue them.
CO 11	Quantitative estimation of biomolecules like vitamins & antibiotics
	will help in understanding their efficacy

Course	Unit	Course/ Unit Title	Credits/
Code/		Microbiology & Industrial Biotechnology	Lectures
Unit		RUSBCH401	2 Credits
	1	Introduction to Microbiology	15L
	1.1	Historical background (contributions or	2L
		Leeuwenhoek. Pasteur, etc.) and General	
		characteristics (size, shape, and structure) of	\sim
		Bacteria	
	1.2	Microbial Taxonomy: Microbial species and strains.	4L
		Classification of bacteria based on morphology	
		(shape and flagella). staining reaction, nutrition and	
		extreme environment (extremophiles:	
		Thermophiles, Psychrophiles, Halophiles, Magnetotactic, Radiation resistant organisms:	
•		examples with their application)	
	1.3	Bacterial cell wall: Structure and function,	2L
	1.0	components of peptidoglycan framework	20
	1.4	Staining methods (principles of staining & types or	3L
		stains) and microscopic identification of bacteria	_
	1.5	Microbial Growth - Growth Curve, Mathematical	2L
		expression, Synchronous growth, Generation	
		time	
	1.6	Culture media (N, C, Special requirements),	2L
		Natural and Synthetic media	
	2	Fermentation Technology	15L
	2.1	Basics of fermentation	1L
	2.2	Types of fermentation processes based on the	5L
		products formed (biomass, enzymes, metabolites,	
		recombinant products, transformation process to	
	2.3	modify a product) Stages of a typical fermentation process	2L
	2.3	Media preparation and optimization based on	2L 2L
	2.7	biochemical parameters	20
•	2.5	Sterilization and disinfection techniques	3L
	2.6	Basic design of fermenter	2L
	3	Industrial Biotechnology	15L
	3.1	Introduction	3L
III	3.2	Recovery and purification of fermented products	
	3.3	Industrial synthesis of different products obtained	6L
		from Bioprocess technology	

3.3.1	Penicillin, Vit B ₁₂ , Cheese, Amylase, Protease,	
	Ethanol, Acetic Acid	
3.3.2	Biosensors, Features of biosensors	6L
	Types of Biosensors based on:	
	Enzymes (environmental monitoring)	
	Antibodies (detection of pathogens)	
	Nucleic acids & Aptamers (clinical diagnosis)	
	Practicals – RUSBCHP401	1 Credit
1	Testing of Air micro-flora by plate exposure	
	technique	C^{\times}
2	Permanent slides of Nostoc & Rhizopus	
3	Staining Techniques – Gram staining, Capsule	
	staining, endospore staining, lipid staining	
4	Study of microbial growth curve	
5	Cell count in a culture medium using optical density	
6	A study of culture inoculation methods - Pour	
	plate, Spread plate & Streak plate	
7	Determination of minimum inhibitory concentration	
	of any one disinfectant	
8	Determination of percentage purity of acetic acid in	
_	vinegar solution	
9	Estimation of vitamin C by dichlorophenol dye	
-	method	
10	Bioassay of penicillin by agar diffusion method	
11	Bioassay of Vitamin B12 by agar diffusion method	

- 1. Microbiology M. Pelczar, E.C.S. Chan and M.R. Krieg McGraw Hill Inc., Singapore (1997).
- 2. General Microbiology, Vol. I & II Powar, Daginawala Himalaya Publishing House. (2015).
- 3. General Microbiology Stanier, Adelberg, Ingraham The Macmillan Press, London (1987)
- 4. Textbook of microbiology Surinder Kumar, Jaypee Medical publication
- 5. Industrial microbiology A.H. Patel Macmillan India Ltd.
- 6. Industrial microbiology L. E. Casida New age international publishers
- 7. Microbial Biochemistry G. N. Cohen
- 8. Industrial Fermentation Paul Allen
- 9. Peter F. Stanbury, Allan Whitaker and Stephen J. Hall, Principles of fermentation technology 3rd edition,Elsevier publications
- 10. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 11. Laboratory Manual in Biochemistry J. Jayaraman New Age International

Course Code: RUSBCH402

Course Title: Plant Biochemistry

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	DESCRIPTION
CO 1	Study the structural details of the plant cell
CO 2	Illustrate the chemistry of different plant pigments in order to
002	explore their isolation, characterization and applications in various
	fields
CO 3	Explain and understand the biochemistry of photosynthetic process
	and its relation to man and its environment.
CO 4	Understand the mechanism of Nitrogen fixation and its importance
	in agricultural production and environment
CO 5	Acquire knowledge about the importance of secondary metabolites
	and its industrial applications.
CO 6	Identify the class and functions of secondary metabolites and
	appreciate their role in physiology of plants
CO 7	Know the significance of plant growth regulators in the development
	of plants
CO8	Understand the basics of plant tissue culture as it is an important
	tool for both basic and applied aspects of plant-based research
CO9	Become competent to explain relation between Photosynthesis,
	growth hormones and Plant growth
CO10	Develop skills and knowledge to conduct basic research work in the
	field of Plant Biochemistry
RAMM	

Course	Unit	Course/ Unit Title	Credits/
Code/		Plant Biochemistry	Lectures
Unit		RUSBCH402	2 Credits
	1	Plant cell structure, plant pigments & nitrogen	15L
		metabolism	
	1.1	Introduction to Plant cell	8L
	1.1.1	Plant cell wall (structure), Vacuole (tonoplast	\sim
		membrane), plasmodesmata, plastids and other	10
		cell organelles	
	1.1.2	Overview of Leaf structure – Upper epidermis,	
		palisade mesophyll, spongy mesophyll, lower	
		epidermis, Guard cells and stomata	
	1.1.3	Specialized plant cells (in brief) – Parenchyma,	
		Sclerenchyma, Collenchyma, Xylem and phloem,	
_		Bulliform cells	
I	1.1.4	Concept of apoplast, apoplastic and symplastic	
		pathways	
	1.2	Plant pigments –	4L
	1.2.1	Primary pigment - Chlorophyll (Types and function)	
	1.2.1	Role of accessory pigments and their biological	
		significance	
		Carotenoids, Xanthophylls, Betalains,	
	1.3	Anthocyanins and other flavonoids	3L
	1.3.1	Nitrogen metabolism Sources of Nitrogen, different forms of nitrogen in	ЗL
	1.3.1	plants	
	132	Conversion of nitrate to nitrite & finally to ammonia,	
	1.5.2	biological nitrogen fixation in plants	
	2	Plant Biochemistry	15L
7.	2.1	Photosynthesis	4L
	2.1.1	Light reactions: Light harvesting complexes,	
		Absorption of light, Photophoshorylation: Cyclic	
		and Non-cyclic (Z scheme)	
	2.1.2	Dark reactions: Calvin cycle, regulation of Calvin	3L
II		cycle	
	2.2	C4 cycle and CAM pathway	
	2.3	Photorespiration	3L
	2.4	Photoperiodism and photoinhibition	
	2.5	Synthesis of glucose, starch, sucrose	1L
	2.6	Physiology of plant movements	4L

		Distribution of the Manufacture of the land	
		Physical movements – Xerochasy, Hydrochasy	
		Vital movements – Protoplasmic streaming,	
		paratonic movements	
		Tactic movements – Chemotaxis, Phototaxis,	
		Thermotaxis	
		Tropic movements – Chemo / geo / hydro / photo /	
		thigmo tropism	
		Nastic movements – Seismonasty, Nyctynasty,	
		Photonasty, Chemonasty, Thermonasty	
	3	Regulation of plant growth, secondary	15L
		metabolites & PTC	
	3.1	Plant Growth Substances	3L
		Structure and Function of - Auxins, Gibberellins	
		Cytokinins, Ethylene and Abscisic Acid	
	3.2	Secondary metabolites of plants	5L
		Nitrogen containing compounds (Alkaloids),	
		Terpenes & Phenolic compounds – An introduction	
111		to Shikimic acid pathway, Mevalonic acid pathway,	
		MEP Pathway	
	3.3	Plant Tissue-culture	7L
	3.3.1	Introduction; Plant breeding; Techniques for	
		maintenance	
	3.3.2	Genetic culture techniques: Callus regeneration,	
		mutant selection from culture; Protoplast fusion,	
		Transformation	
	3.3.3	Applications of PTC	
		Practicals – RUSBCHP402	1 Credit
	1	Isolation of chloroplast from spinach leaves and	
		estimation of chlorophyll content	
	2	Separation of photosynthetic pigments by TLC	
	3	Isolation of starch from potato	
	4	Estimation of carotene in fruits and vegetables	
	5	Estimation of anthocyanin content in vegetable	
24	6	Separation of plant pigments by Adsorption	
25		Column Chromatography/TLC	
Χ-	7	Phytochemical Screening Using Suitable Source	
	8	Estimation of Total Phenolic Content	
	9	Estimation of Flavonoids Content	
	10	Study of Plant Tissue Culture techniques	

- 1. Biochemistry & Molecular Biology of Plants Bob B. Buchanan Wilhelm Gruissem and Russel L. Jones
- 2. Plant Biochemistry Heldt H.-W., Piechulla B.
- 3. Methods in plant biochemistry and molecular biology Dashek, William V
- 4. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet - Alan Crozier
- 5. Plant Physiology Taiz and Zeiger Sinauer Associates Inc.
- 6. Plant Biochemistry Caroline Bowsher, Martin steer, Alyson Tobin Garland science
- 7. Plant Biochemistry P.M Dey and J.B. Harborne Academic Press
- science 7. Plant Biochemistry P.M Dey and J.B. Harborne Academic Press 8. Biochemical methods S Sadashivam and A Manickam New Age International publishers

24

Course Code: RUSBCH403

Course Title: Metabolism II

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand simple concepts related to metabolism, metabolic roles
	played by vitamins and minerals, appreciate the correlation
	between energy molecules, reducing equivalents and their role in
	metabolic pathways.
CO 2	Comprehend the pathways and cycles of nucleic acid metabolism.
CO 3	Describe the interrelationship between metabolic pathways of
	different biomolecules and their interdependence
CO 4	Appreciate the importance of enzymes and coenzymes in
	pathophysiology of diseases.
RAMMA	RAMPURATON

25

Course	Unit	Course/ Unit Title	Credits/			
Code/		Metabolism II	Lectures			
Unit		RUSBCH403	2 credits			
	1	Metabolism of Vitamins and Co-enzymes	15L			
	1.1 Water soluble vitamins					
	1.1.1	Vitamin B complex (Chemistry of the vitamin & its	71			
		coenzyme form, Biochemical role and disorders) –				
		Thiamin, Riboflavin, Niacin, Pyridoxine, Biotin,				
		Lipoic acid:- Chemistry of the Vitamin and its				
		coenzyme form [structure not to be done, only.				
		group involved in its activity]				
	1.1.2	Vitamin C				
	1.2	Fat soluble vitamins A,D,E,K (Chemistry of the				
1		vitamin & its coenzyme form, Biochemical role and				
-		disorders) –				
	1.2.1	Vitamin A – Chemistry, Wald's Visual cycle and	4L			
		role of Rhodopsin (with structure), Transducin,				
		cGMP in vision; Deficiency disorders (Night				
		Blindness, Xerosis Conjunctiva, Xerosis Cornea,				
		Bitot's Spots, Keratomalacia, Follicullar				
	100	Hyperkeratosis)	21			
	1.2.2	Vitamin D – role in Ca absorption and mobilization,	2L			
	1 2 2	Deficiency disorders (Rickets, Osteomalacia);	2L			
	1.2.3 Vit E and Vit K– physiological role (Vitamins D, E, K no structures)					
	2	Nucleic Acid Metabolism & Integration of	15L			
	0	Metabolism				
	2.1	Metabolism of Purine and pyrimidine	6L			
	2.1.1	Biosynthesis and degradation				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.1.2	Salvage pathway				
25	2.1.3	Inhibitors	1L			
	2.2	Integration of metabolism				
	2.2.1	Integration of major metabolic pathways of energy	1L			
		metabolism				
	2.2.2	Organ specialization and metabolic integration –	4L			
		Liver, Adipose tissues, Skeletal muscle, Brain,				
		Kidney				
	2.2.3	Metabolism of starvation - Liver, Adipose tissues,	3L			
		Skeletal muscle, Brain				



	2	Matabalia dia sudava	451		
	3	Metabolic disorders	15L		
	3.1	Inborn error: With respect to Etiology and Clinical	1L		
		manifestations			
	3.2	Disorders related to Carbohydrate Metabolism:	4L		
		Glycogen storage diseases and its types, Glucose-			
		6-phosphate dehydrogenase deficiency disease,			
		Wernicke-Korsakoff syndrome, Fabry's disease			
		Classical galactosemia, essential fructosuria			
	3.3	Disorders related to Amino acid Metabolism:	4L		
		Hyperammonemia, Glycinuria, Phenyl ketonuria,	$\sim$		
		Tyrosinemia & its types, Alkaptonuria, Albinism,			
		Metabolic disorders of urea cycle, Hartnup's			
		disease, Cystinuria, Cystinosis, Homocystinuria			
		&its types, Maple syrup disease			
	3.4	Disorders related to Lipid Metabolism:	4L		
111	0.1	Wolman disease			
		Disorders of Fatty acid oxidation – Genetic			
		deficiencies in carnitine transport and Acyl CoA			
		dehydrogenase (Jamaican vomiting sickness,			
		SIDS), Refsum's disease			
		Disorders of Sphingolipids - Neimann-Pick,			
		Farber's disease, Tay-Sach's and Sphingolipidoses			
		Disorders of lipoprotein metabolism – Hypo and			
		hyper lipoproteinemias, Deficicency of LDL			
	receptors Disorders of divcolinids – Gaucher & Krabbe's				
	Disorders of glycolipids – Gaucher & Krabbe's				
	disease				
	3.5	Disorders related to Nucleic acid Metabolism:	2L		
		Purine metabolism disorders (Gout and its types,			
		Lesch-Nyhan syndrome), Pyrimidine metabolism			
	X	disorders (Orotic aciduria, Reye's syndrome)			
	ZV.	Practicals – RUSBCHP403	1 Credit		
/	1	Estimation of Vitamin A by Carr Price method			
	2	Estimation of tocopherol by Mary & Quaife method			
QY-	3	Estimation of vitamin C iodometrically			
	4	Estimation of Thiamine by Thiochrome method			
	5	Estimation of Riboflavin by Slater method			
	6	Estimation of serum uric acid by phosphotungstic			
		acid method (Caraways method)			
	7	Use of softwares to understand metabolism –			
		KEGG, Ecocyc, Metacyc, Biocyc			
	8	Case study and questionnaire designing for survey			
		on metabolic disorders			



- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- A Textbook of Medical Biochemistry MN Chatterjea & Rana Shinde, 8th Edition, Jaypee Publication
- 3. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 4. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 5. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 6. Text book of Biochemistry J.L Jain
- 7. Text Book of Biochemistry D.M. Vasudevan
- 8. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 9. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 10. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 11. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 12. An Introduction To Practical Biochemistry Plummer David

28



### Modality of Assessment (SEMESTER IV)

#### **Theory Examination Pattern:**

#### A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar ks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

#### B) External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality) Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

#### 1. Duration - These examinations shall be of 02 HOURS duration.

2. Theory question paper pattern:

Question	Options	Marks	Questions Based on	
Q1. A	Any 2 out of 3	04	UNIT I	
Q1. B	Any 2 out of 3	06	UNITI	
Q2. A	Any 2 out of 3	04		
Q2, B	Any 2 out of 3	06	UNIT II	
Q3. A	Any 2 out of 3	04		
Q3. B	Any 2 out of 3	06	UNIT III	
×	TOTAL	60		

#### Paper Pattern:



#### **Practical Examination Pattern:**

#### A) Internal Examination: 40%- 40 Marks

	Particulars	Practical I, II & III	
	Journal	05	
	Experimental tasks	15	_
	Total	20	
l E>	camination: 60%- 60 Mar	ks	<u> </u>
er E	End Practical Examinatio	on:	
	Particulars	Practical I, II & III	
	Laboratory work	95	

#### B) External Examination: 60%- 60 Marks

#### **Semester End Practical Examination:**

Particulars	Practical I, II & III
Laboratory work	25
Viva	05
Total	30

#### **Overall Examination & Marks Distribution Pattern**

### Semester IV

Course	401		402			403			Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150
RANN RANN RANN RANN RANN RANN RANN RANN										

-----