S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: SYBSc

Program Code: RUSBCH

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
PO 1	Recall and explain acquired scientific knowledge in a
	comprehensive manner and apply the skills acquired in their
	chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans and
	execute them, organise data and draw inferences.
PO 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis
	and communication using appropriate digital tools.
PO 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a project
	plan and analyse results.
PO 5	Take complex challenges, work responsibly and independently, as
	well as in cohesion with a team for completion of a task.
	Communicate effectively, convincingly and in an articulate
	manner.
PO 6	Apply scientific information with sensitivity to values of different
	cultural groups. Disseminate scientific knowledge effectively for
	upliftment of the society.
PO 7	Follow ethical practices at work place and be unbiased and critical
2Pi	in interpretation of scientific data. Understand the environmental
	issues and explore sustainable solutions for it.
PO 8	Keep abreast with current scientific developments in the specific
	discipline and adapt to technological advancements for better
	application of scientific knowledge as a lifelong learner

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Bachelor's Degree in SCIENCE program in
	the subject of BIOCHEMISTRY will be able to:
PSO 1	Achieve better understanding of the major thrust areas of the
	disciplines like Chemistry of Biomolecules & their metabolism, Cell
	biology (Basics, Membrane biochemistry, Cancer), Enzymology,
	Genetics, Plant Biochemistry, Pharmacology, Microbiology &
	Immunology.
PSO 2	Gain acumen of the fundamental biochemical processes occurring at
	the molecular and gene level.
PSO 3	Understand the role of Biochemistry in food, human nutrition and
	environmental science.
PSO 4	Get insights into multiple important analytical tools for Biochemical
	testing and apply contextual knowledge and tools of biochemical
	research for problems solving.
PSO 5	Acquire and empower technical knowledge by connecting disciplinary
	and interdisciplinary aspects of biochemistry.
PSO 6	Compile and interpret Biological data using Biostatistics and
	Bioinformatics tools.
PSO 7	Express ideas persuasively through scientific writing and oral
	presentation which will help in the development of the leadership
	qualities.
PSO 8	Possess scientific temperament by research project-based learning.
PSO 9	Procure hands-on real time experience in industries.
PSO 10	Get exposure to the strong theoretical and practical understanding of
K.	various dimensions of Biochemistry and take up research-oriented
	courses in the fields of Biochemistry, Nutrition & Dietetics, Molecular
	Biology, etc.

PROGRAM OUTLINE

YEAR	SEM	COURSE TITLE				
		CODE				
		RUSBCH301	Analytical Techniques in Biochemistry	2		
		RUSBCH302	Enzymology	2		
		RUSBCH303	Metabolism I	2		
	III	RUSBCHP301	Practicals based on RUSBCH301	1		
		RUSBCHP302	Practicals based on RUSBCH302	9 1		
CVDC		RUSBCHP303	Practicals based on RUSBCH303	1		
SYBSc		RUSBCH401	Microbiology & Industrial Biotechnology	2		
		RUSBCH402	Plant Biochemistry	2		
	11.7	RUSBCH403	Metabolism II	2		
	IV	RUSBCHP401	Practicals based on RUSBCH401	1		
		RUSBCHP402	Practicals based on RUSBCH402	1		
		RUSBCHP403	Practicals based on RUSBCH403	1		
25		ARAIN R	JIRANIFORMON			

Semester III

Course Code: RUSBCH301

Course Title: Analytical Techniques in Biochemistry

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Demonstrate broad knowledge in basic analytical instrumentation
	with deep knowledge in its core concepts and its applications.
CO 2	Understand the principle, Instrumentation, working of spectroscopic
	techniques (Flame photometry & AAS) and its applications in
	various research fields
CO 3	Acquire knowledge about the basics and latest developments in
	Biochemical investigation tools and importance of plant and animal
	model in biochemical investigation
CO 4	Demonstrate skill to explain about principle, Bioinstrumentation and
	applications of protein purification techniques like Electrophoresis
	(IEF, 2D PAGE) and Chromatography and their applications in
	various research fields.
CO 5	Acquire cognitive, technical and creative skills which enables
	students to gain an established knowledge and practice concerning
	basic analytical instrumentation and measurement techniques
CO 6	Capable to choose and apply suitable analytical technique to
<	identify different biomolecules
CO 7	Develop skill in carrying out research projects by employing the
1/2	basic biochemical and molecular techniques.

Course	Unit	Course/ Unit Title	Credits/
Code/		Analytical Techniques in Biochemistry	Lectures
Unit		RUSBCH301	2 credits
	1	Spectroscopic techniques	15L
	1.1	Concept of Electromagnetic radiation,	2L
		Electromagnetic spectrum, Emission,	
		Luminescence, Scattering, Transmittance,	
		Absorbance	1,0
•	1.2	Flame Photometry	3L
	1.3	Principle, Components, Structure of flame,	2L
		Interferences in analysis, Applications	
	1.4	Atomic Absorption Spectroscopy	5L
	1.5	Principle, Instrumentation and Applications	3L
	2	Biochemical Investigations	15L
	2.1	Approaches to and levels of biochemical	2L
		investigations	
	2.2	Whole animal and plant studies – the advantages	4L
		and disadvantages of model systems for	
		biochemical investigation (<i>E.coli</i> , Yeast,	
		Dictyostelium, C. elegans, Drosophila, Arabidopsis)	
	2.3	Organ & Tissue studies	3L
II	2.4	Isolated and cultured tissue and cell techniques :	
		isolation, culture and counting of cells	
	2.5	Cell Fractionation:	3L
	2.5.1	Cell rupture – solid shear, liquid shear, high	
		pressure, ultrasound, osmotic shock, chemical	
	7	treatment (enzyme, organic solvent), temperature	
	2.5.2	Choice of suspension medium (isotonic &	3L
	1/2.	hypotonic solution, PBS) and separation methods	
	2.5.3	Problems of cell fractionation	
VIA	3	Protein Purification Techniques	15L
25	3.1	Protein Isolation	3L
		Selection of a Protein Source	
		Methods of Solubilization	
III		Stabilization of Proteins	
	0.0	Assay of Proteins	0.
	3.2	General Strategy of Protein Purification	3L
		Solubilities of Proteins	
		Effects of Salt Concentrations	
		Effects of Organic Solvents	

	LETTACTS OT NH	
	Effects of pH	
2.2	Crystallization Ultracentrifugation Proporative Ultracentrifugation	41
3.3	Ultracentrifugation - Preparative Ultracentrifugation	1L
3.4	Chromatographic Separations- Gel Filtration	4L
	Chromatography, Ion Exchange Chromatography,	
	Affinity Chromatography	
3.5	Electrophoresis- Gel Electrophoresis, SDS PAGE,	4L
	Isoelectric Focusing	
	Practicals – RUSBCHP301	1 Credit
1	Study of spectrophotometer	, ('^\
2	Determination of absorption maxima (λmax)	4/
3	Estimation of glucose by DNSA method	
4	Estimation of proteins using UV-absorbance and	
	Biuret method	
5	Estimation of proteins using Lowry method	
6	Demonstration of flame photometer	
7	Demonstration of separation of protein by SDS	
	PAGE	
8	Separation of proteins by gel filtration	
	chromatography	
9	Demonstration of separation of proteins using	
	anion-exchange chromatography	
10	Ammonium sulphate fractionation of proteins	
11	Virtual lab – Study of model organisms in research	
12	Isolation & Partial purification of an enzyme (Cell	
	lucio Contrifugation colting out dialucio 9 ciza	
	exclusion chromatography)	
RAMMAR		

- 1. Principles & Techniques of Practical Biochemistry Wilson, Walker- Cambridge Univ. Press.
- 2. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath - Himalaya Publ. House.
- 3. Analytical Biochemistry David Holme & Hazel Peck Pearson Education Ltd, **England**
- 4. Principles of Instrumental Analysis Douglas A. Skoog, F. James Holler, Stanley R. Crouch – Thomson Brooks/Cole
- 5. Cell Biology: Essential techniques David Rickwood Wiley
- 6. Cell Separation A practical Approach D. Fisher, G E Francis and D Rickwood Oxford University Press
- 7. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New
- 8. Protein Purification: Principles, High Resolution Methods, and Applications (Methods of Biochemical Analysis), Jan-Christer Janson, 2011.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- PANIMARAIN PULIA PANIMARAIN PANIM 10. Laboratory Manual in Biochemistry - J. Jayaraman - New Age International
- 11. An Introduction To Practical Biochemistry Plummer David

Course Code: RUSBCH302

Course Title: Enzymology

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Have a deeper insight in to the fundamentals enzyme properties,
	nomenclatures, characteristics and mechanisms
CO 2	Describe structure, functions and the mechanism of action of
	enzymes. Learning kinetics of enzyme catalysed reactions and
	enzyme inhibitions and regulatory process, Enzyme activity,
	Enzyme Units, Specific activity
CO 3	Apply biochemical calculation for enzyme kinetics.
CO 4	Discuss the factors affecting enzymatic reactions.
CO 5	Describe the concepts of co-operative behaviour, enzyme inhibition
	and allosteric regulation
CO 6	Compare methods for production, purification, characterization and
	immobilization of enzymes.
CO 7	Describe the major applications of enzymes in industry, understand
	the principles of enzyme immobilisation techniques and enzyme
	extraction procedures
CO 8	Develop new ideas for the development of enzyme-based
	diagnostic kits
CO 9	Discuss various application of enzymes that can benefit human life
CO 10	Discover the current and future trends of applying enzyme
	technology for the commercialization purpose of biotechnological
, N	products.

Course	Unit	Course/ Unit Title	
Code/		Enzymology	Credits/
Unit		RUSBCH302	Lectures
Onit		11000011002	0 1:1
			2 credits
	1	Introduction to enzymes	151
	1.1	Introduction to enzymology	
	1.1.1	Understanding the basic terminology in enzymology	4L
		Enzyme, Apoenzyme, Holoenzyme, Prosthetic group, Active site, Turnover number, Specific activity, Katal, IU, Coenzyme and Cofactor	
	1.1.2	Proteolytic cleavage of zymogens and enzyme denaturation	
	1.2	Classification of enzyme- IUB system	
	1.3	Principle types of reactions catalysed by enzymes	
	1.3.1	Group transfer reactions – Acyl group transfer,	4L
_		Phosphoryl group transfer, Glycosyl group transfer	
]	1.3.2	Oxido-reduction reactions	
	1.3.3	Elimination, isomerization and rearrangement reactions	
	1.4	Enzyme specificity	
	1.4.1	Theories of specificity of enzyme : Fischer's, lock & key and Koshland's, induced fit theories	4L
	1.4.2	Characteristics of enzymes and enzyme substrate complex	
	1.4.3	Concept of active center, binding sites, Stereo specificity and ES complex formation	
7.	1.5	Enzyme activity	
	1.5.1	Factors affecting enzyme activity	3L
	1.5.2	Concept of activation energy and transition state	
(h)		theory	
*	2	Enzyme – kinetics, regulation, inhibition	15L
	2.1	Enzyme kinetics	
II	2.1.1	Derivation of Michaelis - Menten equation and	4L
		Lineweaver Burke equation and Graphical	
		procedures for monosubstrate reactions	
	2.1.2	Significance of Vmax & Km	

	2.2	Enzyme regulation	
	2.2.1	Introduction & its importance	4L
	2.2.2	Types of regulatory mechanisms- Product	
	<i></i>	inhibition, Feedback	
	2.3	Enzyme inhibition	
	2.3.1	Types of inhibitors- Competitive, Non-competitive	4L
		and Uncompetitive, and their mode of action and	
		experimental determination considering suitable	
		example.	4.
	2.3.2	Graphical understanding of effect of different	.(2)
		inhibitors on enzyme kinetics (Use of LB Plot)	
	2.3.3	Numericals based on the above concepts	
			3L
	3	Immobilized enzymes and Application of	4 = 1
		enzymes	15L
	3.1	Immobilized enzymes	
	3.1.1	Introduction	7L
	3.1.2	Importance of immobilization	
	3.1.3	Methods of immobilization- lonic bonding,	
		Adsorption, Covalent bonding (based on R group of	
		amino acids), Microencapsulation and Gel	
		entrapment	
III	3.1.4	Enzyme extraction and optimum conditions, kinetics	
		of immobilized enzyme	3L
	3.1.5	Industrial examples related to the technique	
	3.1.6	Problems associated with enzyme immobilization	
	3.2	Application of enzymes	01
	3.2.1	Isoenzymes. Applications of enzymes in research.	3L
	3.2.2	Application of enzymes in diagnostics	
	3.2.3	(SGPT, SGOT, creatine kinase, alkaline and acid	21
7/1	7,	phosphatases),	2L
	3.2.4	Enzyme immunoassay (HRP),	
		Practicals – RUSBCHP302	1 Credit
	1	Extraction of β-Amylase, Urease & Invertase from	1 Ologic
	2	suitable sources Determination of optimum pH of β-Amylase	
	2 3	Determination of optimum temperature of β-	
		Amylase	
	4	Determination of Km and Vmax of β-Amylase	
	5	Assay to determine enzyme activity and specific	
		activity	
	6	Study the effect of inhibitor on β-Amylase	
		,	

7	Comparative assessment of the β-Amylase activity	
	in free and immobilized state	
8	Immobilization of Yeast and its use in	
	determination of Invertase activity	
9	Demonstration of separation of isoenzymes of LDH	
	by electrophoresis	

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- 3. Textbook of medical physiology A. C. Gyton, and J. E Hall Saunders Elsevier Publications
- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action Daniel Purich
- 5. Medical Biochemistry Ramakrishnan (2012)
- 6. Molecular and cellular enzymology Jeannine Yon-Kahn, G. Hervé
- 7. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 8. Laboratory Manual in Biochemistry J. Jayaraman New Age International

Course Code: RUSBCH303

Course Title: Metabolism I

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION
CO 1	Discuss the overall concept of cellular metabolism – anabolic and
	catabolic pathways, energy storage and release, production of
	building blocks for macromolecule synthesis.
CO 2	Understand the relationship between the properties of
	macromolecules and cellular activities, cell metabolism and
	chemical composition.
CO 3	Illustrate the reactions involved in the metabolic pathways of
	biomolecules
CO 4	Explain glucose homeostasis (pathways and hormonal regulation).
	Discuss Krebs cycle, electron transport, and the pentose phosphate
	pathway
CO 5	Describe common pathways of amino acid catabolism to release
	ammonia (handled by the urea cycle) and carbon skeletons.
CO 6	Differentiate between ketogenic and glucogenic amino acids, and
	diseases resulting from defective catabolism (phenylketonuria,
	maple syrup urine disease) and biosynthesis of non-essential
	amino acids.
CO 7	Describe the structure, biosynthesis, oxidation and storage of fatty
	acids.
CO 8	Deeply understand the metabolic pathways of cholesterol

Course	Unit	Course/ Unit Title	Credits/
Code/		Metabolism I	Lectures
Unit		RUSBCH303	2 Credits
	1	Carbohydrate Metabolism	15L
	1.1	Overview of glucose metabolism	4L
	1.1.1	Glycolysis- Salient features, reactions,	
	1.1.2	Conversion of pyruvate to lactate & its significance	
	1.1.3	Irreversible reactions of glycolysis	1,0
	1.1.4	Regulation of glycolysis	
	1.2	Conversion of pyruvate to Acetyl CoA- Role of	1L
		Pyruvate dehydrogenase complex & its regulation	
I	1.3	Citric acid cycle- Pathway with reactions & its regulation	3L
	1.4	Glycogenolysis – [schematic – no structures, but	1L
	1 5	with enzymes and coenzymes]	2L
	1.5	HMP shunt (Cellular location, sequence of	ZL
	1.6	reactions, multifunctional nature)	21
	1.6	Gluconeogenesis, Glycogenesis – [schematic – no	3L
	4.7	structures, but with enzymes and coenzymes]	41
	1.7	Glyoxylate pathway	1L
	2	Amino acid metabolism	15L
	2.1.1	Chemical nature, functional groups and reactivity of amino acids	4L
	2.1.2	Reactions of amino acids: Deamination,	
		Transamination , Decarboxylation ,	
		Transmethylation, Transdeamination,	
		Ammonia formation, transport and detoxification in	
II	X	brain and liver.	
_	2.2	Urea cycle & its regulation	3L
	2.3	Metabolism of significant amino acids– Glycine,	4L
Ola.		Phenylalanine, Tyrosine, Tryptophan	
25	2.4	Formation of specialized products from amino	4L
		acids and their functions-glutathione, creatine,	
		creatinine, biogenic amines (dopamine,	
		norepinephrine, GABA, Histamine)	
	3	Lipid metabolism	15L
1			5L
III	3.1	Introduction to lipid metabolism	3L

3.1.2	Fatty Acid Oxidation-Fatty Acid Activation,	
	Transport Across the Mitochondrial Membrane,	
	Beta-Oxidation	
3.1.3	Oxidation of Unsaturated Fatty Acids	
3.1.4	Oxidation of Odd-Chain Fatty Acids	
3.2	Ketone Bodies	2L
3.3	Fatty Acid Biosynthesis- Pathway Overview, Acetyl	3L
	CoA Carboxylase, Fatty Acid Synthase, Transport	
	of Mitochondrial Acetyl-CoA Into the Cytosol,	
	Elongases and Desaturases,	.(2)
3.4	Synthesis of Triacylglycerols	1L
3.5	Regulation of Fatty Acid Metabolism	1L
3.6	Cholesterol Metabolism- Cholesterol Biosynthesis,	3L
	Control of Cholesterol Biosynthesis and Transport,	
	Cholesterol Utilization	
	Practicals – RUSBCHP303	1 Credit
1	Estimation of glucose by the Folin-Wu method	
2	Estimation of glucose by the GOD-POD method	
3	Demonstration of glucose metabolism using	
	handheld glucometer	
4	Assay of serum transaminases – SGOT and SGPT	
5	Estimation of serum urea.	
6	Estimation of serum creatinine.	
7	Assay of glutamate dehydrogenase	
8	Lipid Profile -	
а	Estimation of total cholesterol and HDL	
b	Estimation of Triglycerides	
С	Estimation of LDL by calculation	
9	Field trip to pathology lab/super-speciality hospitals	

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Modality of Assessment (SEMESTER III)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	LINUT
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 2 out of 3	04	
Q3. B	Any 2 out of 3	06	UNIT III
الم	TOTAL	60	
PANNARA			

Practical Examination Pattern:

A) Internal Examination: 40%-40 Marks

Particulars	Practical I, II & III	
Journal	05	
Experimental tasks	15	
Total	20	K.GK
l Examination: 60%- 60 Ma	rks	
er End Practical Examination	on:	
Particulars	Practical L.II & III	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II & III
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Course	301		3	02		3	03		Grand Total	
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150

Semester IV

Course Code: RUSBCH401

Course Title: Microbiology & Industrial Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to

COURSE	DESCRIPTION
OUTCOME	DESCRIPTION
CO 1	Demonstrate practical skills in microscopy and handling techniques
	related to it and staining procedures
CO 2	Apprehend the basic microbial structure and function and study the
	structural similarities and differences among various physiological
	groups of microorganisms
CO 3	Know various Culture media and their applications in order to apply
	them for the industrial production
CO 4	Acquire information about large scale production and purification of
	various industrially important produces.
CO 5	Appreciate how microbiology is applied in manufacture of industrial
	products
CO 6	Appreciate the different types of fermentation processes
CO 7	Master aseptic techniques and be able to perform routine culture
	handling tasks safely and effectively
CO 8	Know about design of bioreactors, factors affecting growth and
	production, heat transfer, oxygen transfer and Understand the
	rationale in medium formulation & design for microbial fermentation
CO 9	Procure information about types and applications of biosensors in
	the field of biology
CO 10	Appreciate the technological advances in the field of Biosensors
Ch.	and get fascinated with the advances in the research field and try to
05	pursue them.
CO 11	Quantitative estimation of biomolecules like vitamins & antibiotics
	will help in understanding their efficacy

Course	Unit	Course/ Unit Title	Credits/
Code/		Microbiology & Industrial Biotechnology	Lectures
Unit		RUSBCH401	2 Credits
	1	Introduction to Microbiology	15L
	1.1	Historical background (contributions or	2L
		Leeuwenhoek. Pasteur, etc) and General	
		characteristics (size, shape, and structure) of	
		Bacteria	7,0
	1.2	Microbial Taxonomy: Microbial species and strains.	4L
		Classification of bacteria based on morphology	
		(shape and flagella). staining reaction, nutrition and	
		extreme environment (extremophiles:	
_		Thermophiles, Psychrophiles, Halophiles,	
I		Magnetotactic, Radiation resistant organisms:	
	1.0	examples with their application)	
	1.3	Bacterial cell wall: Structure and function,	2L
		components of peptidoglycan framework	
	1.4	Staining methods (principles of staining & types or	3L
	4.5	stains) and microscopic identification of bacteria	01
	1.5	Microbial Growth - Growth Curve, Mathematical	2L
		expression, Synchronous growth, Generation time	
	1.6	Culture media (N, C, Special requirements),	2L
	1.0	Natural and Synthetic media	ZL
	2	Fermentation Technology	15L
	2.1	Basics of fermentation	1L
	2.2	Types of fermentation processes based on the	5L
	0	products formed (biomass, enzymes, metabolites,	
		recombinant products, transformation process to	
II N	7,	modify a product)	
الام	2.3	Stages of a typical fermentation process	2L
	2.4	Media preparation and optimization based on	2L
		biochemical parameters	
	2.5	Sterilization and disinfection techniques	3L
	2.6	Basic design of fermenter	2L
	3	Industrial Biotechnology	15L
	3.1	Introduction	3L
III	3.2	Recovery and purification of fermented products	
	3.3	Industrial synthesis of different products obtained	6L
		from Bioprocess technology	

3.3.1	Penicillin, Vit B ₁₂ , Cheese, Amylase, Protease,	
	Ethanol, Acetic Acid	
3.3.2	Biosensors, Features of biosensors	6L
	Types of Biosensors based on:	
	Enzymes (environmental monitoring)	
	Antibodies (detection of pathogens)	
	Nucleic acids & Aptamers (clinical diagnosis)	
	Practicals – RUSBCHP401	1 Credit
1	Testing of Air micro-flora by plate exposure	4.
	technique	.(2)
2	Demonstration of Micrometry	
3	Permanent slides of Nostoc & Rhizopus	
4	Staining Techniques – Gram staining, Capsule	
	staining, endospore staining, lipid staining	
5	Study of microbial growth curve	
6	Cell count in a culture medium using optical density	
	(We use serial dilution method and analyse using	
	colorimeter)	
7	A study of culture inoculation methods – Pour	
	plate, Spread plate & Streak plate	
8	Determination of minimum inhibitory concentration	
	of any one disinfectant	
9	Antibacterial activity testing using disc diffusion and	
	agar well method	
10	Determination of percentage purity of acetic acid in	
	vinegar solution	
11	Estimation of vitamin C by dichlorophenol dye	
40	method	
12	Bioassay of penicillin by agar diffusion method	
13	Bioassay of Vitamin B12 by agar diffusion method	

- 1. Microbiology M. Pelczar, E.C.S. Chan and M.R. Krieg McGraw Hill Inc., Singapore (1997).
- General Microbiology, Vol. I & II Powar, Daginawala Himalaya Publishing House. (2015).
- General Microbiology Stanier, Adelberg, Ingraham The Macmillan Press, 3. London (1987)
- 4. Industrial microbiology A.H. Patel Macmillan India Ltd.
- 5. Industrial microbiology L. E. Casida New age international publishers
- 6. Microbial Biochemistry G. N. Cohen
- Industrial Fermentation Paul Allen 7.
- 8. Biochemical methods S Sadashivam and A Manickam New Age W Age CS CS ANTINARIAN RULLAR ANTIONOMONOUS CS International publishers
 - 9. Laboratory Manual in Biochemistry J. Jayaraman New Age International

Course Code: RUSBCH402

Course Title: Plant Biochemistry

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Study the structural details of the plant cell
CO 2	Illustrate the chemistry of different plant pigments in order to
	explore their isolation, characterization and applications in various
	fields
CO 3	Explain and understand the biochemistry of photosynthetic process
	and its relation to man and its environment.
CO 4	Understand the mechanism of Nitrogen fixation and its importance
	in agricultural production and environment
CO 5	Acquire knowledge about the importance of secondary metabolites
	and its industrial applications.
CO 6	Identify the class and functions of secondary metabolites and
	appreciate their role in physiology of plants
CO 7	Know the significance of plant growth regulators in the development
	of plants
CO8	Understand the basics of plant tissue culture as it is an important
	tool for both basic and applied aspects of plant based research
CO9	Become competent to explain relation between Photosynthesis,
	growth hormones and Plant growth
CO10	Develop skills and knowledge to conduct basic research work in the
	field of Plant Biochemistry

Course	Unit	Course/ Unit Title	Credits/
Code/		Plant Biochemistry	Lectures
Unit		RUSBCH402	2 Credits
	1	Plant cell structure, plant pigments & nitrogen	15L
		metabolism	
	1.1	Introduction to Plant cell	8L
	1.1.1	Plant cell wall (structure), Vacuole (tonoplast	
		membrane), plasmodesmata, plastids and other	1,0
		cell organelles	
	1.1.2	Overview of Leaf structure – Upper epidermis,	
		palisade mesophyll, spongy mesophyll, lower	
		epidermis, Guard cells and stomata	
	1.1.3	Specialized plant cells (in brief) – Parenchyma,	
		Sclerenchyma, Collenchyma, Xylem and phloem	
1	1.1.4	Concept of apoplast, apoplastic and symplastic	
<u>-</u>		pathways	
•	1.2	Plant pigments –	4L
	1.2.1	Primary pigment - Chlorophyll (Types and function)	
	1.2.1	Role of accessory pigments and their biological	
		significance	
		Carotenoids, Xanthophylls, Betalains,	
	4.0	Anthocyanins and other flavonoids	0.1
	1.3	Nitrogen metabolism	3L
	1.3.1	Sources of Nitrogen, different forms of nitrogen in	
	4.0.0	plants	
	1.3.2	Conversion of nitrate to nitrite & finally to ammonia,	
	1	biological nitrogen fixation in plants	451
	2.1	Plant Biochemistry	15L 4L
7.	2.1.1	Photosynthesis Light reactions: Light harvesting complexes,	4 L
	۷. ۱. ۱	Absorption of light, Photophoshorylation: Cyclic	
ODI		and Non-cyclic (Z scheme)	
(L)	2.1.2	Dark reactions: Calvin cycle, regulation of Clavin	3L
II	2.1.2	cycle	OL.
••	2.2	C4 cycle and CAM pathway	
	2.3	Photorespiration	2L
	2.4	Photoperiodism and photoinhibition	_ _
	2.5	HMP shunt – Oxidative phase & Non-oxidative	1L
	2.6	Synthesis of glucose, starch, sucrose	1L
			4L
	2.7	Physiology of plant movements	4L

		Physical movements – Xerochasy, Hydrochasy	
		Vital movements – Protoplasmic streaming,	
		paratonic movements	
		Tactic movements – Chemotaxis, Phototaxis,	
		Thermotaxis	
		Tropic movements – Chemo / geo / hydro / photo /	
		thigmo tropism	
		Nastic movements – Seismonasty, Nyctynasty,	
		Photonasty, Chemonasty, Thermonasty	
	3	Regulation of plant growth, secondary	15L
		metabolites & PTC	
	3.1	Plant Growth Substances	3L
		Structure and Function of - Auxins, Gibberellins,	
		Cytokinins, Ethylene and Abscisic Acid	
	3.2	Secondary metabolites of plants	5L
		Nitrogen containing compounds (Alkaloids),	
		Terpenes & Phenolic compounds – An introduction	
III		to Shikimic acid pathway, Mevalonic acid pathway,	
		MEP Pathway	
	3.3	Plant Tissue-culture	7L
	3.3.1	Introduction; Plant breeding; Techniques for	
		maintenance	
	3.3.2	Genetic culture techniques: Callus regeneration,	
		mutant selection from culture; Protoplast fusion,	
		Transformation	
	3.3.3	Applications of PTC	
		Practicals – RUSBCHP402	1 Credit
	1	Study the photosynthetic O2 evolution in hydrilla	
		plant	
	2	Isolation of chloroplast from spinach leaves and	
		estimation of chlorophyll content	
. 5	3	Separation of photosynthetic pigments by TLC	
1/2	4	Isolation of starch from potato	
Dia	5	Estimation of carotene in fruits and vegetables	
67	6	Estimation of anthocyanin content in vegetable	
	7	Separation of plant pigments by Adsorption	
	8	Column Chromatography/TLC	
	9	Phytochemical Screening Using Suitable Source	
	10	Estimation of Total Phenolic Content	
	11	Estimation of Flavonoids Content	
	12	Study of Plant Tissue Culture techniques	

- 1. Biochemistry & Molecular Biology of Plants Bob B. Buchanan Wilhelm Gruissem and Russel L. Jones
- 2. Plant Biochemistry Heldt H.-W., Piechulla B.
- 3. Methods in plant biochemistry and molecular biology Dashek, William V
- 4. Plant Secondary Metabolites: Occurrence, Structure and Role in the Human Diet - Alan Crozier
- 5. Plant Physiology Taiz and Zeiger Sinauer Associates Inc.
- 6. Plant Biochemistry Caroline Bowsher, Martin steer, Alyson Tobin Garland science

Course Code: RUSBCH403

Course Title: Metabolism II

Academic year 2020-21

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE OUTCOME	DESCRIPTION						
CO 1	Understand simple concepts related to metabolism, metabolic roles						
30 1	played by vitamins and minerals, appreciate the correlation						
	between energy molecules, reducing equivalents and their role in						
	netabolic pathways.						
CO 2	Comprehend the pathways and cycles of nucleic acid metabolism.						
CO 3	Describe the interrelationship between metabolic pathways of						
	different biomolecules and their interdependence						
CO 4	Appreciate the importance of enzymes and coenzymes in						
	pathophysiology of diseases.						
Patriophysiology of diseases.							

Course Code/	Unit	Course/ Unit Title Metabolism II	Credits/
Unit		RUSBCH403	Lectures
			2 credits
	1	Metabolism of Vitamins and Co-enzymes	151
	1.1	Water soluble vitamins	V
	1.1.1	Vitamin B complex(Chemistry of the vitamin & its	7L
		coenzyme form, Biochemical role and disorders) -	
		Thiamin, Riboflavin, Niacin, Pyridoxine, Biotin,	
		Lipoic acid:- Chemistry of the Vitamin and its	
		coenzyme form [structure not to be done, only	
		group involved in its activity]	
	1.1.2	Vitamin C	
	1.2	Fat soluble vitamins A,D,E,K (Chemistry of the	
ı		vitamin & its coenzyme form, Biochemical role and	
		disorders) –	
	1.2.1	Vitamin A – Chemistry, Wald's Visual cycle and	
		role of Rhodopsin (with structure), Transducin,	4L
		cGMP in vision; Deficiency disorders (Night	
		Blindness, Xerosis Conjunctiva, Xerosis Cornea,	
		Bitot's Spots, Keratomalacia, Follicullar	
		Hyperkeratosis)	
	1.2.2	Vitamin D – role in Ca absorption and mobilization,	
		Deficiency disorders (Rickets, Osteomalacia);	2L
	1.2.3	Vit E and Vit K– physiological role	
7.	P	(Vitamins D, E, K no structures)	2L
CAN	2	Nucleic Acid Metabolism & Integration of Metabolism	15L
(h)	2.1	Metabolism of Purine and pyrimidine	
_	2.1.1	Biosynthesis and degradation	6L
II	2.1.2	Salvage pathway	
"	2.1.3	Inhibitors	
	2.2	Integration of metabolism	1L
	2.2.1	Integration of major metabolic pathways of energy metabolism	1L

	2.2.2	Organ specialization and metabolic integration –	
		Liver, Adipose tissues, Skeletal muscle, Brain,	4L
		Kidney	
	2.2.3	Metabolism of starvation - Liver, Adipose tissues,	
		Skeletal muscle, Brain	3L
	3	Metabolic disorders	15L
		Wetabolic disorders	13L
	3.1	Inborn error: With respect to Etiology and Clinical	
		manifestations	11
	3.2	Disorders related to Carbohydrate Metabolism:	
	0.2	Glycogen storage diseases and its types, Glucose-	4L
		6-phosphate dehydrogenase deficiency disease,	
		Wernicke-Korsakoff syndrome, Fabry's disease	
		Classical galactosemia, essential fructosuria	
	3.3	Disorders related to Amino acid Metabolism:	
	3.3	Hyperammonemia, Glycinuria, Phenyl ketonuria,	4L
			. .
		Tyrosinemia & its types, Alkaptonuria, Albinism,	
		Metabolic disorders of urea cycle, Hartnup's	
		disease, Cystinuria, Cystinosis, Homocystinuria	
	0.4	&its types, Maple syrup disease	
III	3.4	Disorders related to Lipid Metabolism:	4L
		Wolman disease	,_
		Disorders of Fatty acid oxidation – Genetic	
		deficiencies in carnitine transport and Acyl CoA	
		dehydrogenase (Jamaican vomiting sickness,	
		SIDS), Refsum's disease	
		Disorders of Sphingolipids – Neimann-Pick,	
	7	Farber's disease, Tay-Sach's and Sphingolipidoses	
	~ < >	Disorders of lipoprotein metabolism – Hypo and	
		hyper lipoproteinemias, Deficicency of LDL	
		receptors	
		Disorders of glycolipids – Gaucher & Krabbe's	
25	2.5	disease	
	3.5	Disorders related to Nucleic acid Metabolism:	2L
		Purine metabolism disorders (Gout and its types,	
		Lesch-Nyhan syndrome), Pyrimidine metabolism	
		disorders (Orotic aciduria, Reye's syndrome)	
	4	Practicals – RUSBCHP403	1 Credit
	1	Estimation of Vitamin A by Carr Price method	. Orogic
	2	Estimation of tocopherol by Mary & Quaife method	
	3	Estimation of vitamin C iodometrically	
	4	Estimation of Thiamine by Thiochrome method	

5	Estimation of Riboflavin by Slater method	
6	Estimation of serum uric acid by phosphotungstic	
	acid method (Caraways method)	
7	Use of softwares to understand metabolism –	
	KEGG, Ecocyc, Metacyc, Biocyc	
8	Case study and questionnaire designing for survey	
	on metabolic disorders	
	6 7	Estimation of serum uric acid by phosphotungstic acid method (Caraways method) Use of softwares to understand metabolism – KEGG, Ecocyc, Metacyc, Biocyc Case study and questionnaire designing for survey

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction To Practical Biochemistry Plummer David

Modality of Assessment (SEMESTER IV)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar ks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions
		7	Based on
Q1. A	Any 2 out of 3	04	LINUT
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	UNIT II
Q2. B	Any 2 out of 3	06	ONITII
Q3. A	Any 2 out of 3	04	UNIT III
Q3. B	Any 2 out of 3	06	ONIT III
	TOTAL	60	
PAMMAK			

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

	Particulars	Practical I, II & III	
	Journal	05	
	Experimental	15	
	tasks		
	Total	20	c×/
ΙE	xamination: 60%- 60 Ma	rks	
er I	End Practical Examination	on:	
	Particulars	Practical I, II & III	
		A 2/2	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II & III
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester IV

Course	401		~	402			403			Grand
	16									Total
	Internal	External	Total	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	40	60	100	300
Practicals	20	30	50	20	30	50	20	30	50	150