S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: MSc

Program Code: RPSBCH

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Master's Degree in SCIENCE program will be able to:
PO 1	Demonstrate in depth understanding in the relevant science discipline. Recall, explain, extrapolate, and organize conceptual scientific knowledge for execution and application and also to evaluate its relevance.
PO 2	Critically evaluate, analyse, and comprehend a scientific problem. Think creatively, experiment and generate a solution independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand, and compare digital information from various sources and apply it for scientific knowledge acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and draw relevant inferences. Communicate the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence, and tenacity at the workplace. Successfully plan and execute tasks independently as well as with team members. Effectively communicate and present complex information accurately and appropriately to different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in collection and interpretation of scientific data and avoid plagiarism and violation of Intellectual Property Rights. Appreciate and be sensitive to environmental and sustainability issues and understand its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design scientific solutions to problems. Exemplify project plans, use management skills, and lead a team for planning and execution of a task.
PO 8	Understand cross disciplinary relevance of scientific developments and relearn and reskill so as to adapt to technological advancements.

PROGRAM SPECIFIC OUTCOMES

PSO	Description				
	A student completing Master's Degree in SCIENCE program in the subject of BIOCHEMISTRY will be able to:				
PSO 1	Acquire necessary knowledge and skills to undertake a career in				
PSO 2	research, either in industry or in an academic set up. Compare and contrast the breadth and depth of scientific knowledge in the broad range of fields including Protein biochemistry, Bioenergetics, Diagnostic Biochemistry, Hormonal Biochemistry, Molecular Biology, Nutritional Biochemistry, and Nanotechnology.				
PSO 3	Extrapolate and comprehend the regulatory role of metabolic processes and understand the underlying cause of metabolic disorders				
PSO 4	Acquire thorough knowledge of Biochemical Techniques, Advanced Immunology, Physiology, Genetic Engineering, and Biotechnology				
PSO 5	Describe and express the biochemical basis of human diseases, protein structure and conformation, non-invasive diagnostics, clinical research, and its importance in drug development. Usage of this knowledge further for multitude of laboratory applications.				
PSO 6	Integrate and apply the techniques in Biophysics, Analytical Biochemistry, Clinical biochemistry, Microbiology, Molecular Biology and Basics in Bioinformatics				
PSO 7	Gain proficiency in laboratory techniques in both Biochemistry and Molecular Biology, and be able to apply the scientific method to the processes of experimentation and Hypothesis testing				
PSO 8	Develop and enhance skills & improve employability through academic, research and internship opportunities				
PSO 9	Gain exposure to basic research through the provision of PG research based project.				
PSO 10	Learn to work as a team as well as independently to compile and interpret Biological data, carry out Research investigations and draw conclusions				

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSBCH101	Membrane Biochemistry &	4
			Bioenergetics	
		RPSBCH102	Protein Biochemistry & Enzymology	4
		RPSBCH103	Biostatistics and Ecology	4
		RPSBCH104	Instrumentation and Analytical	4
	'		Techniques I	
		RPSBCHP101	Practicals based on RPSBCH101	2
		RPSBCHP102	Practicals based on RPSBCH102	2
		RPSBCHP103	Practicals based on RPSBCH103	2
MSc I		RPSBCHP104	Practicals based on RPSBCH104	2
IVISCI		RPSBCH201	Industrial Biotechnology	4
		RPSBCH202	Research Methodology, IPR,	4
			Bioinformatics & Nanotechnology	
		RPSBCH203	Fundamentals of Genetics	4
	П	RPSBCH204	Instrumentation and Analytical	4
	"		Techniques II	
		RPSBCHP201	Practicals based on RPSBCH201	2
		RPSBCHP202	Practicals based on RPSBCH202	2
		RPSBCHP203	Practicals based on RPSBCH203	2
		RPSBCHP204	Practicals based on RPSBCH204	2
		RPSBCH301	Biochemistry of Metabolism	4
		RPSBCH302	Clinical biochemistry	4
		RPSBCH303	Molecular biology	4
		RPSBCH304	Biology of diseases & Clinical	4
	Ш		Research	
	0	RPSBCHP301	Practicals based on RPSBCH301	2
		RPSBCHP302	Practicals based on RPSBCH302	2
	71	RPSBCHP303	Practicals based on RPSBCH303	2
MSc II		RPSBCHP304	Practicals based on RPSBCH304	2
WOON		RPSBCH401	Human Physiology & Developmental	4
S. C.			Biology	
		RPSBCH402	Endocrinology	4
		RPSBCH403	Genetic Engineering & Biotechnology	4
	IV	RPSBCH404	Advanced Immunology	4
		RPSBCHP401	Dissertation	4
		RPSBCHP402		
		RPSBCHP403	Practicals based on RPSBCH403	2
		RPSBCHP404	Practicals based on RPSBCH404	2

Course Title: Membrane Biochemistry & Bioenergetics

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Understand composition and structure of bio-membranes
CO 2	Recognize the importance of transport mechanisms and cellular trafficking across biological membranes
CO 3	Describe different types of transporters and explain their mechanisms
CO 4	Comprehend the different modes of communication between cells including signal reception, transduction, amplification, and response.
CO 5	Know about Bioenergetics, mechanisms of oxidative phosphorylation
CO 6	Learn the concept and mechanism of ATP synthesis

Course	Unit	Course/ Unit Title	Credits/
Code/		Membrane Biochemistry & Bioenergetics	Lectures
Unit		RPSBCH101	4 Credits
	1	Membrane Fluidics & Dynamics	15L
	1.1	Overview of membrane biochemistry	2L
	1.2	Membrane fluidity	2L
	1.2.1	Importance of membrane fluidity	
U.	1.2.2	Maintenance of membrane fluidity- Concept of	
en.		transition temperature & general characteristics	
	1.3.1	Lipid rafts- Composition significance & its role of	4L
		lipid rafts in maintaining membrane & membrane	
		signalling	
	1.3.2	Specialized lipid rafts- Caveolae (Formation of	
		Cavolins, Cavins and its significance in	
		endocytosis & other mechanisms	
	1.4	Membrane dynamics	2L
		Membrane bilayer mobility- Frye Edidin	

1.5 Membrane asymmetry- Lateral membrane asymmetry- Lateral membrane asymmetry- Role of Flippase, Floppase and Scramblase in maintaining asymmetry 1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 2. Membrane Transport & cellular trafficking 2.1 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2.2 Calherisn, Lectins and selectins (Their role and importance in cell adhesion with one significant example) 3.3 Cell-cell junction 3.4 Cell-cell junction 3.5 Cell-cell junction 3.6 Cell-cell junction 3.7 Cell-cell junction 3.8 Cell-cell junction 3.9 Cell-cell junction			Experiment & FRAP analysis	
Lateral membrane asymmetry- Lipids & proteins Transverse membrane asymmetry Role of Flippase, Floppase and Scramblase in maintaining asymmetry 1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 1 L 2 Membrane Transport & cellular trafficking 2.1 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K*Pump, Ca²*-K*Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 1L 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		1.5	· · · · · · · · · · · · · · · · · · ·	21
Transverse membrane asymmetry Role of Flippase, Floppase and Scramblase in maintaining asymmetry 1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 1. Membrane Transport & cellular trafficking 2.1 Passive transport - Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²+-K* Pump, ABC transporter (CFTR) Light driven - Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport- Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		1.0	• • •	22
Role of Flippase, Floppase and Scramblase in maintaining asymmetry 1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 2 Membrane Transport & cellular trafficking 2.1 Passive transport - Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K*+Pump, Ca²*-K*+Pump, ABC transporter (CFTR) Light driven - Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2.2 Cell Adhesion and Cell adhesion molecules 3.2.3.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
maintaining asymmetry 1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 2 Membrane Transport & cellular trafficking 2.1 Passive transport - Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven - Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 1L 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2.2 Cell Adhesion and Cell adhesion molecules 3.2.3 Importance of cell adhesion molecules 3.2.4 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			, , ,	
1.6 Membrane domain and cell polarity- 1.7 Study of RBC cell- model for cell membrane 1. Membrane Transport & cellular trafficking 2.1 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 1. The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 3.1 Introduction to Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
1.7 Study of RBC cell- model for cell membrane 2 Membrane Transport & cellular trafficking 2.1 Passive transport - Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven - Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		1.6		21
2 Membrane Transport & cellular trafficking 2.1 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K*+Pump, Ca²*-K*+Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
2.1 Passive transport – Passive diffusion (Polar & Non polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			•	
polar), diffusion and osmosis, facilitated diffusion of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K*Pump, Ca²*-K*Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 1L 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
of ions and molecules 2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Signifficance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			·	
2.2.1 Ion channels- Ligand gated, mechanical gated, Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K*+Pump, Ca²*-K*+Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Signifficance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			• • •	
Voltage gated, Anion transporter (band 3) 2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.2.1		
2.2.2 Molecule channels- (Glucose transporters) 2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
2.3 Primary Active transport Atpases pump- Na*-K* Pump, Ca²*-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.2.2		
Atpases pump- Na*-K* Pump, Ca²+-K* Pump, ABC transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				4L
transporter (CFTR) Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
Light driven – Bacteriorhodopsin 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
II 2.4 Secondary active transports- Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
Symport (Mechanism of Absorption of peptides by enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.4		3L
enterocytes), Mechanism of Cytosolic pH maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)	II			
maintenance 2.5 Specialized ion channels - Aquaporins, lonophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
Ionophores: gramicidin, & valinomycin 2.6 Antiport - Absorption of peptides by enterocytes, Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.5	Specialized ion channels - Aquaporins,	
Antiporter in cardiac muscle cell with effect of Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				
Ouabain & digoxin 2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.6	Antiport - Absorption of peptides by enterocytes,	2L
2.7 Cellular trafficking 2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			Antiporter in cardiac muscle cell with effect of	
2.7.1 The Molecular Mechanisms of Membrane Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			Ouabain & digoxin	
Transport and the Maintenance of Compartmental Diversity 2.7.2 Gated, vesicular and transmembrane transport 1L Cell-cell communication 15L 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.7	Cellular trafficking	2L
Diversity 2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.7.1	The Molecular Mechanisms of Membrane	
2.7.2 Gated, vesicular and transmembrane transport 3 Cell-cell communication 3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			Transport and the Maintenance of Compartmental	
3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			Diversity	
3.1 Introduction to Cell-cell communication & its Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		2.7.2	Gated, vesicular and transmembrane transport	1L
Biological Significance 3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)		3	Cell-cell communication	15L
3.2 Cell Adhesion and Cell adhesion molecules 3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)	CB1.	3.1	Introduction to Cell-cell communication & its	1L
3.2.1 Importance of cell adhesion and cell adhesion molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)			Biological Significance	
molecules 3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)				4L
3.2.2 Cadherins, Lectins and selectins (Their role and importance in cell adhesion with one significant example)	l III	3.2.1	•	
importance in cell adhesion with one significant example)				
example)		3.2.2	•	
3.3 Cell-cell junction 3L				
		3.3	Cell-cell junction	3L

	3.3.1	Classification	
	3.3.2	Adherence junction- Focal adhesion,	
	0.0.2	Hemidesmosome, desmosome and their role in	
		Wnt pathway, tissue integrity	
	3.3.4	Tight junction- Role of JAM (claudins and	2L
	5.5.4	occludins) its role in glucose transport across	2L
		intestine	
	3.3.5	Gap junction- connexon & its role in electrical	1L
	3.3.3	synapse	
	3.4	Extracellular matrix in plants and animals	4L
	3.4.1	Structure and Biological significance of	
		Collagen, Elastin, fibronectin, Laminins and	
		integrins	
	4	Oxidative Phosphorylation & its regulation	15L
	4.1	Oxidative phosphorylation	2L
	4.2	Electron transfer reactions in mitochondrion	26
	4.2.1	Universal electron acceptors – Role in biological	
	4.2.1	oxidation-reduction reactions	
	4.2.2	Membrane-bound carriers (Ubiquinone,	2L
	4.2.2	Cytochromes, Fe-S proteins, Rieske Fe-S	ZL
		proteins) – Structure and mechanism of electron transfer	
	4.3.1	Methods for determining the sequence of electron	4L
		carriers	
	4.3.2	Structure and function of each complex of	
		mitochondrial respiratory chain	
	4.3.3	Separation of functional complexes of respiratory	
		chain	
IV	4.3.4	Flow of electrons and protons through the	
		complexes of respiratory chain	
	4.4	Proton motive force	1L
	4.5	Alternative mechanism in plant mitochondria	
	4.6.1	Phosphoryl group transfers and ATP	1L
"La"	4.6.2	ATP synthesis by binding-change model for ATP	3L
		synthase	0 -
	4.6.3	Role of luciferin in firefly flashes	
	4.6.4	Chemical uncouplers of oxidation and	
	1.0.1	phosphorylation	
	4.7	Alternative respiratory pathway in plant	
	4.8	Regulation of oxidative phosphorylation	2L
	4.8.1	Regulation based on energy demands, in	4 L
	4.0.1	oxidative stress, In brown fat and integrated	
		regulation in metabolism	
		regulation in metabolism	

	Practicals RPSBCH101	2 Credits
1	Separation of RBC membrane proteins by SDS-	
	PAGE	
2	Effect of temperature and molecular weight on	
	diffusion	
3	Effect of tonicity on cell membrane	
4	Mitochondrial respiration and effect of different	
	Inhibitors for ETC (Dry lab)	
5	In-vitro study of RBC membrane stabilization	
6	Isolation of lipids from plant and animal source	
	and their utilization in the formation of artificial	
	membrane vesicle	
7	Graphical study of hydropathy plot and FRAP)
	analysis (Dry lab)	

2AMMARA

- 1. Molecular Cell Biology (2016) 8th ed., Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A. and Scott, M.P., W.H. Freeman & Company (New York).
- 2. Biochemistry (2016) 6th ed., Garret, R. H. and Grisham, C.M., Cengage Learning (Boston).
- 3. Lehninger: Principles of Biochemistry (2017) 7th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York).
- 4. Molecular Biology of the Cell (Sixth Edition) by by Bruce Alberts
- 5. Essential Cell Biology Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, Walter (4th Edition)
- 6. Principles of Biochemistry (2008) 3rd ed., Voet, D.J., Voet, J.G. and Pratt, C.W., John Wiley & Sons, Inc. (New York), ISBN:13: 978-0470-23396-2
- 7. Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 8. Laboratory Manual in Biochemistry, 2003, J. Jayaraman, New Age International

Course Title: Protein Biochemistry & Enzymology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Understand details of protein structure such as protein organization,
	end group analysis and stabilizing bonds
CO 2	Know Various techniques used in the study of protein biochemistry
CO 3	Learn Protein folding & Protein Engineering and their research -
	oriented applications
CO 4	Analyse Ramachandran plot and other plots with respect to kinetics
	of different enzymes
CO 5	Determine optimum temperature, pH for the activity of an enzyme.
CO 6	Determine Km and Vmax of enzymes and to analyse enzyme
	kinetics.
CO 7	Understand enzyme inhibition with more complexity.

Course	Unit	Course/ Unit Title	Credits/
Code/		Protein Biochemistry & Enzymology	Lectures
Unit		RPSBCH102	4 Credits
	1	Introduction to Proteins & Protein Structure	15L
	1.1	Organization of protein structure into primary,	2L
		Secondary, Tertiary and Quaternary structures	
U.	1.2.1	Primary structure determination of protein	2L
MI.		End group analysis-N & C terminal amino acid	
		analysis – By dansyl chloride, Sanger's Reagent,	
		Edman's degradation, Exopeptidase	
	1.2.2	Cleavage of disulphide bond	
	1.3	Mass spectrometry for protein analysis, Tandem	3L
		MS, Solid phase peptide synthesis	
	1.4	Nature of stabilizing bond – covalent and non-	
		covalent.	

	4 -	T	01
	1.5	The peptide bond length & configuration-Dihydral	2L
		angle psi and phi, Helices, sheets and turns –	
		Ramachandran plot	
	1.6	Techniques used to study 3D Structures- X-ray	2L
		diffraction, NMR	
	1.7	Supersecondary structures: Motifs and domains	2L
	1.8	Tertiary and quaternary structures- Structure of	2L
		haemoglobin and myoglobin	
	2	Protein folding & Protein Engineering	15L
	2.1	Protein denaturation and folding (Ribonuclease A)	2L
	2.1.1	Importance of primary structure in folding	
	2.2	Molecular mechanism of protein folding	2L
	2.3	Role of chaperons, chaperonins & PDI in protein	2L
		folding	
II	2.4	Disorders related to protein folding- Alzheimer's	2L
		and prion disease	
	2.5	Protein Engineering	3L
	2.5.1	Basic principles, Types and Methods	
	2.5.2	Strategies in protein engineering (Directed	4L
		evolution, Comparative design, Rational design)	
	2.5.3	Applications and case studies.	
	3	Enzyme kinetics and inhibition	15L
	3.1	Introduction to enzymes, mechanism of enzyme	3L
		action	
	3.2	Types of enzyme catalysis – Acid base, Covalent	
		& metal ion	
	3.3	Enzyme kinetics	4L
	3.3.1	The Relationship between Substrate	
		Concentration and Reaction Rate- Michaelis-	
		Menten Kinetics of monosubstrate enzyme	
		reaction, LB Plot, Einsethal Cornish Bowden Plots	
III		& Eadie- Hofstee plot	
	3.4	Enzyme inhibition	4L
16		Types of inhibitors- Competitive, Non-competitive	
		and Uncompetitive, Mixed, Suicidal inhibition and	
		their mode of action and experimental	
		determination considering suitable example	
	3.5	Allosteric enzymes	4L
	3.3	Mechanism of action, deviation from MM equation	
		and allosteric regulation	
		Allosteric interactions- protein ligand binding, co-	
		operativity, Hill & Scatchard plot	
IV	4	Enzyme regulation and modifications	15L
1 7	-	Enzyme regulation and modifications	IJL

	4.1	Enzyme regulation- Product inhibition, Feedback	3L
		control, Enzyme induction and repression	
	4.2.1	Enzyme modification reactions (Phosphorylation,	3L
		Adenylation, Uridylylation, ADP-ribosylation,	
		Methylation)	
	4.2.2	Regulation of enzymes by proteolytic cleavage	
	4.3	Enzymatic action and biological role of following –	2L
		Hexokinase, Chymotrypsin, Carboxypeptidase A	
	4.4	Immobilized enzymes	2L
	4.4.1	Relative practical and economic advantage for	
		industrial use	
	4.4.2	Methods of immobilization- Ionic bonding,	4L
		Adsorption, Covalent bonding (based on R group	
		of amino acids), Microencapsulation and Gel	
		entrapment.	
	4.4.3	Immobilization of multienzyme system	1L
		Practicals – RPSBCHP102	2 Credits
	1	Estimation of proteins using Lowry method	
	2	Study of Ramachandran plot (Dry lab)	
	3	Study of protein denaturation – change in	
		isoelectric pH	
	4	Colorimetric assay for cysteine	
	5	Determination of optimum pH & temperature of β-	
		Amylase/Invertase/Urease	
	6	Determination of Km and Vmax of β-	
		Amylase/Invertase/Urease	
	7	Assay to determine enzyme activity and specific	
		activity	
	8	Study the effect of inhibitor on β-	
		Amylase/Invertase/Urease	
	9	Comparative assessment of the β-	
	(~)	Amylase/Invertase/Urease activity in free and	
		immobilized state	
"67"	10	Reusability & Storage stability of immobilized	
		Amylase/Invertase/Urease	
		y	

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- 3. Textbook of medical physiology: A. C. Gyton, and J. E HallSaunders Elsevier Publications, A division of Reed Elsevier India Pvt .Ltd.New Delhi ISBN 81-8147-084-2

- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action, Daniel Purich
- 5. Medical Biochemistry by Ramakrishnan (2012)
- 6. ENZYMES: Catalysis, Kinetics and Mechanisms by N.S. Punekar
- 7. Molecular and cellular enzymology by Jeannine Yon-Kahn, G. Hervé.
- al publis, national 8. Biochemical methods, S Sadashivam and A Manickam, new age international publishers

Course Title: Biostatistics and Ecology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
00100IIIE	
CO 1	Acquire hands-on practical training to plan biological experiments with requisite sample size. After completion of experiments based on different sample sizes students will be able to perform proper statistical analysis of the data using mean, median, mode, Range, percentiles, variance, SD, Mean deviation and Coefficient of variation
CO 2	Apply the principles of biological data management in real life
	situations.
CO 3	Learn R software and this training will improve computational,
	mathematical and computer skills of the students.
CO 4	Make the use of Hypothesis testing, Chi-square, Correlation &
	Regression, Normal distribution, ANOVA, Probability in their
	research work.
CO 5	Know statistical methods and it will help them in improving their
	analytical and interpretation skills
CO 6	Understand different concepts in population studies and ecology

Course	Unit	Course/ Unit Title	Credits/
Code/		Biostatistics and Ecology	Lectures
Unit		RPSBCH103	4 Credits
	1	Descriptive statistics and Probability	15L
	1.1	Descriptive statistics:	5L
	1.1.1	Measures of central tendency - Mean, Median and	
		mode	
I	1.1.2	Measures of dispersion- Range, percentiles,	5L
		variance, SD, Mean deviation, Coefficient of	
		variation	
	3.1	Probability	5L
	3.1.1	Operations on events and probability	

	3.1.2	Conditional probability	
	3.1.3	Addition & Multiplication laws	
	3.1.4	Concept of odds in favour and odds against	
	2	Normal distribution, Hypothesis testing and	15L
		ANOVA	
	2.1.1	Normal distribution and skewness	3L
	2.1.2	Normal variate & its significance	
	2.2	Hypothesis testing –	4L
II		z-test – one sample, two samples	
		One sample t-test	
		Independent and Paired t-test	5L
	2.3	Standard error	
	2.4	ANOVA – characteristics and types One way	3L
		ANOVA testing	
	3	Chi-square, Correlation & Regression and	15L
		Introduction to R-software	
	3.2	Chi-square	2L
	3.2.1	Test of population variance	
	3.2.2	Test of goodness of fit	3L
	3.2.3	Test of association - 2 x 2 Table, Yates' correction	
	1.2	Correlation	4L
	1.2.1	Introduction to Correlation, Bivariate & multivariate	
III		distributions,	
	1.2.2	Types of correlation	
	1.2.3	Measure of correlation – Karl Pearson, Spearman	
		rank order and scatter plot	
	1.3	Regression	3L
	1.3.1	Concept of regression, Types of regression	
	1.3.2	Regression coefficient and equation	
	1.3.3	Simple & multiple regression	
	3.3	Introduction & application of R-software	3L
. 0	4	Ecology	15L
16	4.1	Introduction to ecology	1L
	4.2	Habitat and Niche	3L
0/12		Concept of habitat and niche; niche width and	
Y		overlap; fundamental and realized niche; resource	
IV		partitioning; character displacement	
''	4.3	Population Ecology	4L
		Characteristics of a population; population growth	
		curves; population regulation; life history	
		strategies (r and K selection); concept of	
		metapopulation – demes and dispersal, interdemic	
		extinctions, age structured populations	

4.4	Species Interactions	3L
	Types of interactions, interspecific competition,	
	herbivory, carnivory, pollination, symbiosis	
4.5	Community Ecology	4L
	Nature of communities; community structure and	
	attributes; levels of species diversity and its	
	measurement; edges and ecotones	
	Practicals – RPSBCHP103	2 Credits
1	Introduction & application of R-software	
2	Descriptive statistics using Microsoft excel/ R-	
	software	
3	Hypothesis testing of means & ANOVA using	
	excel/ R-software	
4	Hypothesis testing of difference between means &	
5	Chi-square test using excel/ R-software	
6	Correlation & Regression using excel/ R-software	
7	Study of Gause principle using Paramecium	
	species (K-strategies) as study model	
8	Study of logistic vs exponential growth curve and	
	problems on population ecology	
9	Graphical study of Lotka Voltera competition	
	equation	

- 1. Biostatistics by Arora
- 2. B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- 3. Wayne Daniel, Biostatistics: A Foundation for Analysis in Health Sciences, 10th edition, 2013, Wiley.
- 4. Analysis of Biological Data, M. Whitlock and D. Schluter (2009); Roberts and company publishers
- 5. Statistical Modeling: A Fresh Approach by Daniel Kaplan
- 6. Research methodology Methods and Techniques by C.R. Kothari
- 7. OdumE.P. Fundamentals of Ecology, sauders publication; Indian edition, Nataraj Publications Dehradun, 1998.
- 8. Verma, P.S. and Agarwal, V.K. Concept of ecology (Environmental Biology), S.Chand & Co. Ltd., New Delhi 2004.

Course Title: Instrumentation and Analytical Techniques I

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Gain expertise in the isolation of various biomolecules and organelles.
CO 2	Obtain hands-on training in basic separation techniques in biochemistry and gain expertise in the isolation of various biomolecules and organelles
CO 3	Acquire a sound background of latest methods used in biochemistry for purification of enzymes, isolation and characterization of proteins, nucleic acids, etc.
CO 4	Develop practical skills related to applications of spectroscopy, chromatography, electrophoresis
CO 5	Get equipped with the latest techniques used in analysis of biomolecules and this will help them in undertaking further research in the area of biochemistry in any research/industrial institution.

Course	Unit	Course/ Unit Title	Credits/
Code/		Instrumentation and Analytical Techniques I	Lectures
Unit	(2)	RPSBCH104	4 Credits
	1	Spectrophotometric techniques based on	15L
16)	photometry	
ell.	1.1	Introduction to spectrophotometric techniques	1L
	1.2.	Principle, Instrumentation, Working & Biochemical	
		applications of:	
I	1.2.1	Ultraviolet and visible light spectroscopy	3L
	1.2.2	Fluorescence spectroscopy	2L
	1.2.3	Luminometry	2L
	1.2.4	Circular dichroism spectroscopy	2L
	1.2.5	Light scattering	2L
	1.2.6	Atomic spectroscopy	3L

	2	Introduction to Chromatography	15L
	2.1	Principle of chromatography – distribution	2L
		coefficient, retention time, retention factor, eddy	
		diffusion, Theoretical plates	
	2.2	Types of Chromatography	
	2.2.1	Planar Chromatography	4L
		Paper Chromatography, TLC and HPTLC	
		(Principle, working and applications)	
	2.2.2	Column Chromatography	3L
II		Partition chromatography	
		Normal phase Vs reverse phase chromatography	
		Chiral chromatography	
		Ion-exchange chromatography	3L
		Hydrophobic interaction chromatography /Size	
		exclusion	
		Affinity chromatography-	3L
		Immunoaffinity chromatography	
		Metal chelate ligand chromatography	
	3	Introduction to Electrophoresis and advanced	15L
		electrophoresis techniques	
	3.1	General principle of electrophoresis, and concept	2L
		of electroendo-osmotic flow and Frictional	
		coefficient	
	3.2	Types of Electrophoresis based on apparatus and	
		supporting matrix	
	3.3	Electrophoresis of proteins	5L
		Polyacrylamide gel (cross-linking reaction for the	
		formation of polyacrylamide gel)	
		Continuous and Discontinuous buffer system SDS	
III		PAGE, Native PAGE, Gradient gel, Isoelectric	
""	01	focusing gel, 2D Gel	
7		Detection, estimation and recovery of Proteins in	
		gels- Staining techniques (CBB, Silver staining,	
		Zinc staining), protein blotting	
	3.4	Electrophoresis of nucleic acid –	3L
		Electrophoresis of DNA –AGE, PFGE	
		Electrophoresis of RNA	
		Detection of Nucleic acid in gel- Ethidium bromide,	
		syber green	
	3.5	Advanced electrophoresis- Capillary	4L
		electrophoresis, Immunoelectrophoresis, Microchip	
		electrophoresis,	

		-	
	3.6	Gel documentation system- Principle and its application	1L
	4	Radioisotopic Techniques	15L
	4.1	Radioisotopes - Radioisotope Decay, Production of	5L
		Isotopes, Synthesis of labelled compounds,	
		Interaction of Radioactivity with matter,	
		Measurement of Radioactivity with matter	
	4.2	Radio-activity counters	5L
	4.2.1	Methods based upon Gas Ionization (Ionization	
IV		Chambers, Proportional Counters, Fundamentals	
IV		of Geiger Counters)	
	4.2.2	Photographic methods	
	4.2.3	Methods based upon excitation - Liquid	4L
		Scintillation counting	
	4.3.1	Uses of Stable Isotopes in Biology & Clinical	
		Diagnostics	
	4.3.2	Commonly used Isotopes	
	4.4	Safety Aspects and Precautions	1L
		Practicals – RPSBCHP104	2 Credits
1		Estimation of glucose by Folin-Wu method	
	2	Estimation of Na and K using flame photometer	
	3	Separation of amino acids/ sugars/ bases by thin	
		layer chromatography/paper	
	4	Ammonium sulphate fractionation of proteins	
	5	Separation of protein by SDS PAGE	
	6	Separation of proteins by gel filtration	
	_	chromatography	
	7	Separation of proteins using anion-exchange	
		chromatography	
	8	Two dimensional chromatography of amino acids	
	9	Partial purification of an enzyme	
	10	Determination of pKa of glycine.	

- 1. Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Analytical Biochemistry by David Holme and Hazel Peck
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education

- 6. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Chromatography G. Abbott
- 8. Chromatography Concepts, Methods and Applications By Judah Carter
- ublisher ... onal 9. Biochemical methods, S Sadashivam and A Manickam, new age international publishers

Modality of Assessment (SEMESTER I)

Theory Examination Pattern:

- A) Internal Assessment- 40%- 40 Marks
- B) External Examination- 60%- 60 Marks
 Semester End Theory Examination: (Deviation from the usual modality)
 Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.
 - 1. Duration These examinations shall be of **02** ½ **HOURS** duration.
 - 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	LINUT
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 1 out of 2	03	
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 1 out of 2	03	
Q3. B	Any 2 out of 3	06	UNIT III
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	UNIT IV
	TOTAL	60	
AMARK			

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern Semester I

Course	101			1	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	1	03		1	04		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Title: Industrial Biotechnology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the fermentation process, inoculum development and
	fermentation media.
CO 2	Acquire information about large scale production and purification of
	various industrially important produces.
CO 3	Procure information about types and applications of biosensors in
	the field of biology.
CO 4	Obtain knowledge about production of different types of vaccines
CO 5	Realize the importance and identify the requirements for the
	compliance of QC, QA, GMP and GLP

Course	Unit	Course/ Unit Title	Credits/
Code/		Industrial Biotechnology	Lectures
Unit		RPSBCH201	4 Credits
	1	Industrial Importance of Carbohydrates,	15L
		Proteins & Lipids	
	1.1	Carbohydrates of industrial importance	2L
	1.1.1	Manufacturing and refining of cane sugar, pectin &	
		cellulose	
US.	1.1.2	Manufacturing of polysaccharides-Plant	3L
		polysaccharide (Gum Arabic), microbial	
		polysaccharides- modified starches & celluloses	
	1.2	Lipids of industrial importance	3L
	1.2.1	Extraction and refining of vegetable oils and	
		animal fats & essential oils	
	1.2.2	Extraction and applications of chlorophyll,	2L
		carotene, lycopene Turmeric	
	1.3	Proteins of industrial importance	5L

r			1
	1.3.1	Hormones – conventional & engineered-Insulin,	
		Erythropoietin, Growth hormones	
	1.3.2	Non – catalytic industrial proteins – casein, whey	
		proteins, Egg proteins, wheat germ proteins.	
	2	Biosensors & Vaccine Technology	15L
	2.1	Biosensors	2L
	2.1.1	Beneficial features of biosensors	
	2.1.2	Basic components of biosensor	
	2.2	Types: Electrochemical, Thermometric, Optical,	2L
		Piezoelectric, Whole cell, Immunobiosensor	
		(Construction and development)	
		Types of biosensors, their construction, working	
		and application in various industries and medicine	
	2.2.1	Calorimetric biosensor – Enzyme based sensors	3L
		(Importance in clinical diagnosis)	
	2.2.2	Potentiometric biosensor- Ion selective electrode	
		(Importance in environmental monitoring)	
	2.2.3	Amperometric biosensor- (Glucose monitoring)	
II		Optical biosensor- Chromogenic reaction	
	2.2.4	Piezo-electric biosensor –Crystal study	1L
	2.2.5	Immunosensor - ELISA	
	2.3	Production of vaccine	2L
	2.3.1	Vaccine derived from whole organism Attenuated	
		& Inactivated vaccine	
	2.3.2	Vaccine derived from macromolecules purified	3L
		from pathogenic organism – Use of Bacterial	
		polysaccharide, Toxoid, Proteins, Synthetic	
	0.00	peptide for vaccine development	
	2.3.3	Recombinant vector vaccine	
	2.3.4	Multivalent subunit vaccine- (SMAA complex &	2L
	005	ISCOM)	
	2.3.5	DNA vaccine (Production & applications)	
	2.3.6	Anti-Idiotype vaccine (Use of hybridoma	
	_	technology)	451
	3	Bioprocess technology	15L
Y	3.1	Upstream processing:	2L
	3.1.1	Strains and Strain Improvement of industrial	
III	240	microorganisms	
	3.1.2	Isolation of industrially important microorganisms	21
	3.1.3	Improvement of industrial microorganisms	3L
		a) Selection of induced mutants for primary	
		metabolite	

		h) location of induced mutants for accordant	
		b) Isolation of induced mutants for secondary metabolites	
	0.4.4		
	3.1.4	Sterilization	
	0.4.5	i) Introduction ii) Media sterilization	01
	3.1.5	Design and methods of batch sterilization	2L
	3.1.6	Design and methods of continuous sterilization	
	3.2	Downstream processing	5L
	3.2.1	Recovery & Purification of fermentation products:	
		i. Introduction, Precipitation, Filtration - theory,	
		filter-aids, batch filters (Plate and frame filters),	. 🗸
		continuous filters (Rotary vacuum),	
		Centrifugation: flocculating agent, range of	
		centrifuges - Basket, tubular bowl.	
		ii. Cell disruption: Physico-chemical.	
		iii. Liquid – Liquid extraction, Solvent recovery,	
		iv. Chromatography, Ultrafiltration, reverse	
		osmosis, liquid membranes, drying,	
	2.2	crystallization, Whole broth processing.	21
	3.3	Environmental aspects	3L
	3.3.1	Effluent treatment and regulations for fermentation	
		industry	
	3.3.2	Modern methods of effluent treatment	
	4	Total Quality Management (QC, QA, GLP, GMP)	15L
	4.1	Importance of Laboratory Quality	2L
	4.1.1	Overview of the quality management system	
	4.2	Introduction and Concept (in labs & production	3L
		processes) of -	
	4.2.1	QC – Types, Requirement to implement QC,	
IV		Control materials	
	4.2.2	QA – SOP, Calibration, Auditing and checking	3L
		compliance	
	4.2.3	GMP – Sanitation and Hygiene, Qualification and	3L
		validation Decompositation of OMD proportions	
		validation, Documentation of GMP practices	
	4.2.4	GLP – Protocol, Standard Operating Procedures	4L
1671	4.2.4	•	4L
" UNLY	4.2.4	GLP – Protocol, Standard Operating Procedures	4L
BILLI	4.2.4	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and	4L 2 Credits
Valley	4.2.4	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection	
BULL	_	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201	
Selle,	_	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201 Estimation of Total Carbohydrates by anthrone	
A MAIN	1	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201 Estimation of Total Carbohydrates by anthrone method	
	1 2	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201 Estimation of Total Carbohydrates by anthrone method Colorimetric estimation of fructose	
	1 2 3	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201 Estimation of Total Carbohydrates by anthrone method Colorimetric estimation of fructose Isolation of pectin form apples	
	1 2 3 4	GLP – Protocol, Standard Operating Procedures (SOPs), Validation of methods, Audits and Inspection Practicals – RPSBCHP201 Estimation of Total Carbohydrates by anthrone method Colorimetric estimation of fructose Isolation of pectin form apples Isolation of proteins from germinating seeds	

7	Extraction of oils using Soxhlet apparatus and it's	
	analysis	
8	Bioassay of penicillin/ampicillin	
9	Bioassay of vitamin B ₁₂	
10	Quality control experiments	
11	Virtual Lab – Bioreactor modelling & Simulation	
	Lab	

- 1) L.E.Casida, Industrial Microbiology, New Age International publishers
- 2) Biosensors: Fundamentals and Applications, Bansi Dhar Malhotra and Chandra Mouli Pandey (Smithers Rapra)
- 3) Handbook of Good Laboratory Practices (GLP), Second Edition World Health Organization
- 4) Quality Assurance A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes, Jamie Bartram and Gareth Rees, World Health Organization
- 5) M. Pelczar, E.C.S. Chan and M.R. Krieg, MICROBIOLOGY, McGraw Hill Inc., Singapore (1997).
- 6) L. E. Casida, Industrial microbiology, New age international publishers
- 7) Industrial Fermentation by Paul Allen

2 ANNAR PRIMAR P

- 8) Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 9) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International

Course Title: Research Methodology, IPR, Bioinformatics & Nanotechnology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand the objectives of doing scientific research.
CO 2	Learn how to identify the area of research to be conducted, how to
	proceed for literature survey using a variety of sources and how to
	write research project proposal with well-placed hypothesis and
	objectives.
CO 3	Learn the skills of research design, nature of sample size as well as
	collection and analysis of data.
CO 4	Know the skills of writing research report and making oral
	presentations.
CO 5	Understand the significance of studying different variables in a
	research study and its effects on the results obtained and the
	importance of the statistical analysis of the results. At the end the
	students will also be aware of different methodologies by which
	research can be effectively communicated.
CO 6	Understand methods used for bioinformatics studies.
CO 7	Comprehend the synthesis of nanomaterials and their applications in
	the field of biology and medicines.
CO 8	Appreciate the technological advances in the field of
	nanobiotechnology and get fascinated with the advances in the
	research field and try to pursue them.

Course	Unit	Course/ Unit Title	Credits/
Code/		Research Methodology, IPR,	Lectures
Unit		Bioinformatics & Nanotechnology	4 Credits
		RPSBCH202	
	1	Research, Research Design & Presentation	15L
	1.1	Research	4L
	1.1.1	Meaning of research, Objectives of research,	
		Types of Research, Research Process	
	1.1.2	Criteria for good research, Significance of	
		research.)
	1.2	Research Problem	
	1.2.1	Formulating research problem	
	1.2.2	Problems encountered by a researcher	
	1.3	Research Design	
	1.3.1	Meaning and need for research design, Features	
		of good research design,	
	1.3.2	Types of research designs – exploratory,	6L
		descriptive, experimental, survey and case study.	
	1.3.3	Different research designs and their basic	
I		principle.	
		Study Designs and Variations (only definitions):	
		Prospective, retrospective, prospective &	
		retrospective, observational, experimental, clinical	
		trials, RCT, Cohort, cross sectional and case-	
		controlled studies.	
	1.3	Presentation	5L
	1.3.1	Methodology for writing a report and oral	
		presentation	
	1.3.2	Presentation – Oral & Written. Use of digital	
		media.	
16	1.3.3	Preparing for oral presentation, Structure of oral	
MI.	101	presentation	
	1.3.4	Giving the oral presentation - Presentations in	
		classrooms, scientific meets & public audience.	
	2	Scientific Communication	451
	2	Report Writing & IPR and Patents	15L
II	2.1	Report Writing	8L
	2.1.1	Significance of report writing, Different s in report	
		writing, types of report.	

IV	4	Nanotechnology	15L
		importance	
		Phylogenetic analysis, phylogenetic tree and its	
	3.6	Molecular phylogenetics	2L
	2.6	Models Molecular phylogopatics	21
		Motif and Domain Databases Using Statistical	
		Expressions Matif and Demain Databases Using Statistical	
	3.5	Motif and Domain Databases Using Regular	2L
W.	0.5	Sequence Alignment	01
		Identification of Motifs and Domains in Multiple	
	3.4	Protein Motifs and Domain Prediction,	2L
		Statistical Significance of Sequence Alignment	
	2 Y	Sequence Similarity versus Sequence Identity	
		Sequence Homology versus Sequence Similarity	
	3.3	Evolutionary Basis	2L
		Pairwise Sequence Alignment	
		Sequence Alignment	
III		Other databases- OMIM, Taxonomy	
		Ecocyc, Biocyc	
		Metabolic pathway database- KEGG, Metacyc,	
		SCOP, CATH	
		Protein Structural Databases- PDB, RasMol	
		TrEMBL	
		Protein Sequence Databases- Swissprot, PIR,	
		Literature Database- Pubmed, Medline	
		Unigene,	
		Biological Databases and retrieval techniques Nucleotide Databases- Genbank, EMBL, DDBJ	
	3.2.2	Information Retrieval from Biological Databases	
	2 2 2	Secondary & Specialized databases	
	3.2.1	Types of Biological Databases – primary &	
	3.2	Introduction to Biological Databases	5L
	0.0	Application & limitations	-1
	3.1	Introduction to In silico biology - Aim, Scope,	2L
	3	Bioinformatics	15L
		Registration of Patents	
	2.2.2	Patents- Definition and concept, Types, Criteria,	
	2.2.1	Introduction, Types, Objectives, Applications.	
	2.2	Intellectual Property Right (IPR)	7L
	2.1.3	Layout of research report, Layout for poster	
		seminars/symposia/ conferences/workshops	
		reports for scientific journals, popular magazines,	
	2.1.2	Mechanics and precautions of writing research	

	4.1	Nanomaterials-its synthesis and applications	2L
	4.1.1	Synthesis of Nanoparticles – Solvent Extraction,	
		Emulsification, Salting out, Solvent Displacement,	
		Spray Drying	
	4.1.2	Synthesis of Nanocapsules – Nanoprecipitation,	2L
		Emulsion, – Diffusion, Double emulsification,	
	4.4.0	Emulsion coacervation, Layer by layer	01
	4.1.3	Synthesis Nanotubes – Arc-vaporization, Laser	2L
	4.0	ablation, Chemical Vapour Deposition	
	4.2	Gold Nanoparticles – Types and its applications in biology	4L
	4.3	Lab-on-a-chip (LOC) – Principle & role in clinical	
		diagnosis)
	4.4	Nanotherapeutics	3L
	4.5	Nanotoxicity	
	4.5.1	Absorption and distribution of Nanoparticles	2L
	4.5.2	Toxicological effects of nanoparticles in various	
		target organs	
		Practicals – RPSBCHP202	2 Credits
	1	Collection of Biochemical data and its presentation	
	2	Review of research work carried out of any 5	
		national or international research centers or	
		institutes	
	3	Presentation of review of research using	
		powerpoint	
	4	Preparation of research proposal for minor/ major	
		research projects to be submitted to the funding	
		agencies	
	5	Sequence retrieval (protein and gene) from NCBI	
	15	and Molecular file formats - FASTA,	
		GenBank/Genpept	
<	6	BLAST suite of tools for pairwise alignment	
. 0	7	Molecular Visualization Softwares: Pymol and	
169	_	Rasmol for protein structures from PDB	
	8	Multiple sequence alignment (CLUSTALW/	
12/2		TCoffee) and Construction of phylogenetic trees	
X	9	Preparation of nanoparticles and analysis	

- 1) Research Methodology methods and techniques, Second Revised Edition, C.R.Kothari (New Age International Publishers)
- 2) Bhattacharya, D. K. (2003): Research Methodology, Excel Books, New Delhi
- 3) Research Methods Lippinott Company, U.K

- 4) Bioinformatics methods and applications, Genomics, Proteomics and drug discovery, Fourth Edition, S.C.Rastogi
- 5) Introduction to Bioinformatics in Microbiology. Henrik Christensen, Springer International Publishing (2018)
 - 6) Introduction to Bioinformatics. Arthur Lesk, Oxford University Press (2013)

Course Title: Fundamentals of Genetics

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Strengthen the fundamentals of Mendelian and neo-Mendelian genetics.
CO 2	Understand the structure of DNA & RNA
CO 3	Learn and apply concepts like epistasis, gene mapping, tetrad and Pedigree analysis which will be helpful in competitive examinations
CO 4	Acquire knowledge about Organization of DNA in genome
CO 5	Gain a thorough understanding of the mechanism of cell cycle, relationship of cell cycle and programmed cell death via intracellular and extracellular control mechanisms
CO 6	Know about mechanism of DNA replication which would lay a foundation for studying next processes of central dogma.
CO7	Enlist different types of mutations, agents causing mutations and disorders resulting from mutations.

Course	Unit	Course/ Unit Title	Credits/
Code/		Fundamentals of Genetics	Lectures
Unit	(2-)	RPSBCH203	4 Credits
	1	Genetics I	15L
	1.1	Non –Mendelian inheritance	3L
1	1.1.1	Molecular mechanism of Incomplete dominance,	
		co-dominance & Overdominance	
	1.1.2	Incomplete penetrance	
I	1.1.3	Epistasis & Environmental effect on phenotype	3L
	1.1.4	Sex linked inheritance, Sex influenced inheritance	
		& Sex limited inheritance	
	1.1.5	Allelic effects- Pleiotropy, Polygenic inheritance	
	1.1.6	Maternal gene effect, Maternal inheritance &	2L
		cytoplasmic inheritance	

	1.2	Pedigree analysis – Pedigree conventions and	3L
		analysing pedigrees, Problems based on these	
		concept	
	1.3	Structure of Nucleic acid	3L
	1.3.1	Structure and characteristic of DNA & RNA -	
		double helical structure	
	1.3.2	A, B & Z DNA, linear and circular DNA.	
	1.4	Tm of DNA, its relation to GC content,	
	1.5	Types of RNA, structure & functions	
	1.6	Cot curves and its significance, C-value paradox	1L
	2	Genetics II	15L
	2.1	Eukaryotic chromosomes, Unique and repetitive	4L
		sequences of DNA	
	2.2	Organization of DNA in genome	
	2.3	Histones, nucleosomes, structure of chromatin,	
		cohesion protein	
	2.4	Lampbrush & polytene chromosomes	2L
II	2.5	Genetic recombinations: Holliday models	
	2.6.1	Gene mapping – Basis and Merits	4L
	2.6.2	Linear order of genes, Relative distance between	
		linked genes, Coefficient of coincidence,	
		Interference	
	2.7	Tetrad analysis - Ordered & Unordered tetrad	2L
	2.8	Problems based on above concept	3L
	3	Cell Cycle and its regulation & DNA	15L
		Replication	
	3.1	Cell cycle and its regulation	3L
	3.1.1	Phases of cell cycle and its regulation (Cyclins &	
		CDKs)	
	3.1.2	State of DNA in different phases of cell cycle	
	3.2	Replication of DNA	2L
	3.2.1	Structural overview of DNA Replication	
	3.2.2	Models for DNA replication- Conservative, Semi-	
III		conservative & dispersive	
	3.2.3	Experimental evidences	
Y	3.2.4	Enzymes and proteins involved in replication	2L
	3.2.5	Mechanism of Bacterial DNA replication	
	3.3	Replication of DNA in yeast	2L
	3.3.1	Eukaryotic DNA polymerases	
	3.3.2	Proteins and accessory molecules essential in the	
		initiation, and elongation steps	
	3.3.3	Mechanism (Pre-RC assembly, Initiation,	2L
		elongation & termination)	
	1		1

	3.3.4	Concept of Okazaki fragment maturation & stalled	3L
		replication fork	
	3.3.5	End replication problem and role of telomerases	
	3.4	Comparative overview of DNA replication in	1L
		prokaryotes and eukaryotes	
	4	Mutations, Chromosomal Abnormalities & DNA	15L
		Repair	
	4.1	Mutations	3L
	4.1.1	Types of mutations	
	4.1.2	Physical, chemical and Biological agents causing mutations	
	412		
	4.1.3	Reverse mutations, Mutagenesis, Ames test.)
	4.2	Chromosomal aberration	3L
	4.2.1	Variations in chromosome structure - inversions,	
		deletions, duplications and translocations	
	4.2.2	Variations in chromosome number - Euploidy and	
		aneuploidy (Autosomal and Sex chromosomes)	
	4.3	Syndromes resulting from chromosomal	4L
IV		abnormalities	
10	4.3.1	Monosomies (Turner syndrome)	
	4.3.2	Disomies and trisomies (Down Syndrome,	
		Klinefelter's syndrome)	
	4.3.3	Cri-du-chat syndrome, Philadelphia chromosome	
	4.3.4	Chromosomal Microdeletions – Prader-Willi	
		Syndrome & Angelman Syndrome	
	4.4	Recognition of DNA lesions and molecular	5L
		mechanism of the following DNA Repairs	
	4.4.1	Direct repair (Photoreactivation, O6 methyl	
		guanine DNA methyl transferase)	
	4.4.2	Single strand repairs - Base & Nucleotide Excision	
		Repairs, Mismatch repair (Hemimethylation of	
"67"		DNA)	
	4.4.3	Translesion synthesis and SOS repair	
	4.4.4	Recombinational repair	
		Practicals – RPSBCHP203	2 Credits
	1	Squash preparation of salivary glands of Dipteran	
		larva to observe polytene chromosomes	
	2	Induction of polyploidy in onion roots	
	3	Smear technique to demonstrate sex chromatin in	
		buccal epithelial cells.	
	4	Study of abnormal human karyotype and	

	pedigrees (dry lab)	
5	Problems based on gene mapping	
6	Extraction of total nucleic acids from plant tissue	
7	Estimation of UV absorption of nucleic acids &	
	proteins	
8	Effect of UV Radiation on Bacterial Growth	

- 1) E.J. Gardner and D.P. Snustad. PRINCIPAL OF GENETICS (1984), John Wiley & Sons, Ney York.
- 2) Watson, Baker, Bell, Gann, Levine, Losick, "Molecular Biology of the Gene", Fifth Edition, Pearson Education (LPE)
- 3) Russell, P.J., "iGenetics- A Molecular Approach", Third Edition, Pearson International Edition
- 4) Snustad & Simmons, "Principles of Genetics", Third Edition, John Wiley & Sons Inc.
- 5) Watson, Gilman, Witkowski, Zoller, "Recombinant DNA", Second Edition, Scientific American Books
- 6) Pierce, B.A, "Genetics- A Conceptual Approach", Second Edition, W.H. Freeman &Co

Course Title: Instrumentation and Analytical Techniques II

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Gain Knowledge about advanced instruments used in biochemical analysis.
CO 2	Comprehend the diagnosis of various diseases better by studying Instruments used in medicine.
CO 3	Acquire a sound background of latest methods used in biochemistry for purification of enzymes, isolation and characterization of proteins, nucleic acids, etc.
CO 4	Develop interest in analysis of biomolecules and this will help them in undertaking further research in the area of biochemistry in any research/industrial institution.

Course	Unit	Course/ Unit Title	Credits/
Code/		Instrumentation and Analytical Techniques II	Lectures
Unit		RPSBCH204	4 Credits
	1	Spectrophotometric techniques based on	15L
		molecular structure and interactions	
	1.1	Introduction to spectroscopic techniques for	1L
		Structural analysis	
	1.2	Principle, Instrumentation, Working & Biochemical	3L
		applications of	
	1.2.1	Infrared and Raman spectroscopy	
	1.2.2	Surface plasmon resonance	2L
	1.2.3	Electron paramagnetic resonance	2L
	1.2.4	Nuclear magnetic resonance	3L
	1.2.5	X-ray diffraction	2L
	1.2.6	Small-angle scattering	2L
II	2	Advanced Chromatography	15L

	2.1	Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP)	3L
	2.2	High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity,	3L
		fluorescence)	
	2.3	Introduction to Hyphenation GC-MS and LC-MS	3L
	2.4	MALDI & MALDI-TOF	3L
	2.5	Sample Preparation and Biochemical Applications of	3L
		above mentioned Techniques	
	3	Special Instrumental Methods of Analysis	15L
	3.1	Basic Principles, Instrumentation, working and	
		applications of -	
	3.1.1	FRAP, FRET, FLIM	3L
	3.1.2	Conductometry	1L
III	3.1.3	Potentiometry	2L
	3.1.4	Selective Ion Meters	2L
	3.1.5	High Frequency Titrations	2L
	3.1.6	Polarography	2L
	3.1.7	Anode Stripping Voltammetry	2L
	3.1.8	Neutron Activation Analysis	1L
	4	Instruments used in medicine	15L
		Principle and working of	
	4.1	Dialyser, Nebulizer, Otoscope, Bone Densitometry	4L
		Single neuron recording, patch-clamp recording	
	4.2	ECG, Defibrillator	1L
IV	4.3	Brain activity recording, lesion & stimulation of brain - PET, MRI, fMRI, CAT	3L
	4.4	Medical imaging –	2L
	4.4.1	Radiography (Projection radiographs &	
		Fluoroscopy)	
	4.4.2	Ultrasound (medical ultrasonography),	3L
		Elastography, Tactile imaging	
10	4.4.3	Tomography, Echocardiography (Heart Ultrasound)	2L
		Practicals – RPSBCHP204	2 Credits
	1	Virtual Labs – Autoradiography, Patch Clamp	
		Techniques	
	2	Study of Electrocardiograms in healthy & diseased	
		states	
	3	Seminar on the Principle, Working and Applications	
		of different instruments	
	4	Instrumentation: Case studies	
	5	Field visit & report writing	

- 1. Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Principles of Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- 6. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Medical Biochemistry by Ramakrishnan (2012)
- P ANN ARRAIN RUIR AUTONOMON PROPERTY OF THE PR 8. TextBook of Medical Physiology – Guyton – Prism Books Pvt. Ltd. – Bangalore

Modality of Assessment (SEMESTER II)

Theory Examination Pattern:

- A) Internal Assessment- 40%- 40 Marks
- B) External Examination- 60%- 60 Marks
 Semester End Theory Examination: (Deviation from the usual modality)
 Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.
 - 1. Duration These examinations shall be of **02** ½ **HOURS** duration.
 - 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on	
Q1. A	Any 1 out of 2	03	LINUT	
Q1. B	Any 2 out of 3	06	- UNIT I	
Q2. A	Any 1 out of 2	03	LINUTU	
Q2. B	Any 2 out of 3	06	- UNIT II	
Q3. A	Any 1 out of 2	03	LINUT	
Q3. B	Any 2 out of 3	06	- UNIT III	
Q4. A	Any 1 out of 2	03	LINUT IV	
Q4. B	Any 2 out of 3	06	- UNIT IV	
	TOTAL	60		

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern Semester II

Course	201			2	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	2	203 204				Grand Total	
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Title: Biochemistry of Metabolism

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Understand the major catabolic and anabolic pathways in metabolism of carbohydrates, lipids, amino acids and nucleotides.
CO 2	Describe regulatory mechanisms that control the metabolic pathways.
CO 3	Realize the Influence of Diet and hormonal signalling on metabolic pathways.
CO 4	Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte.
CO 5	Illustrate the molecular mechanisms underlying major inherited diseases of metabolism.
CO 6	Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.

Course	Unit	Course/ Unit Title	Credits/
Code/		Biochemistry of Metabolism	Lectures
Unit		RPSBCH301	4 Credits
. 6	1	Carbohydrate Metabolism	15L
MAIN	1.1	Schematic representation of Glycolysis & Kreb's cycle	2L
	1.2	Gluconeogenesis: Pathway and its Regulation	1L
ı	1.3	Glycogen Metabolism: Synthesis, breakdown, mechanisms of control of glycogen metabolism - Direct Allosteric Control of Glycogen Phosphorylase and Glycogen Synthase, Covalent Modification of Enzymes by Cyclic Cascades, Hormonal regulation, Maintenance of Blood Glucose Levels	3L

	1.4	Futile cycle, Rapoport Luebering cycle, Cori cycle,	2L
		Glucose-Alanine cycle & their significance	
	1.5	Shuttles-Malate-Aspartate shuttle & Glycerol	3L
		phosphate shuttle	
	1.6	Uronic acid pathway (biosynthesis, degradation &	
		its significance),	
		Galactose and fructose metabolism; Sorbitol	
		pathway	
	1.7	Biosynthesis of oligosaccharides and glycoproteins	1L
	1.8	Synthesis of carbohydrates in plants	3L
	1.8.1	Calvin cycle and its regulation, regulated synthesis	
		of starch and sucrose, photorespiration, C4 and	
		CAM pathways, Glyoxylate pathway, synthesis of	
		cell wall polysaccharides	
	2	Amino acid metabolism	15L
	2.1	Reactions of amino acids: Deamination,	3L
		Transamination, Decarboxylation,	
		Transmethylation, Transdeamination,	
	2.2	Ammonia formation, transport and detoxification in	
		brain and liver	
	2.3	Kreb's bicycle, Urea cycle & its regulation.	2L
		Inherited defects of urea cycle	
	2.4	Glucogenic and ketogenic amino acids.	
	2.5	Metabolism of one carbon units. Disorders of	3L
II		amino acids metabolism, phenylketonuria,	
		alkaptonuria, maple syrup urine disease,	
		methylmalonic acidemia (MMA), homocystinuria	
		and Hartnup's disease	
	2.6	Biosynthesis of amino acids	2L
	(2)	Overview of amino acid synthesis. Biosynthesis of	
 		non-essential amino acids and its regulation	
. 15	2.7	Precursor functions of amino acids	1L
. 21	2.7.1	Biosynthesis of creatine and creatinine, polyamines	4L
		(putresine, spermine, spermidine), catecholamines	
		(dopamine, epinephrine, norepinephrine) and	
		neurotransmitters (serotonin, GABA).	4=1
	3	Lipid metabolism	15L
	3.1	Fatty acid oxidation	4L
	3.1.1	Fatty acid transport to mitochondria, β-oxidation of	
III		saturated, unsaturated, odd and even numbered	
	Ī	and branched chain fatty acids, regulation of fatty	
1			
		acid oxidation, peroxisomal β-oxidation, ω oxidation, ketone bodies metabolism, ketoacidosis	

	3.2	Fatty acid synthesis	2L
	3.2.1	Transport of mitochondrial Acetyl Co A to cytosol,	
		Fatty acid synthase complex, Synthesis of	
		saturated, unsaturated, odd and even chain fatty	
		acids and regulation.	
	3.2.2	Biosynthesis of eicosanoids, cholesterol, steroids	2L
		and isoprenoids	
	3.2.3	Synthesis of prostagladins, leukotrienes and	3L
		thromboxanes. Synthesis of cholesterol, regulation	
		of cholesterol synthesis. Synthesis of steroids and	
		isoprenoids.	
	3.2.3	Biosynthesis of glycerophospholipids and	2L
		sphingolipids	/
	3.4	Lipid storage diseases	2L
	4	Nucleic Acid Metabolism & Integration of	15L
		Metabolism	
	4.1	Biosynthesis of purine and pyrimidine nucleotides	3L
	4.1.1	De novo synthesis of purine and pyrimidine	
		nucleotides, regulation and salvage pathways.	
		Deoxyribonucleotides and synthesis of nucleotide	
		triphosphate	
	4.1.2	Biosynthesis of deoxyribonucleotides and its	2L
		regulation, conversion to triphosphates,	
	4.2	Biosynthesis of coenzyme nucleotides	1L
IV	4.3	Degradation of purine and pyrimidine nucleotides	2L
	4.4	Digestion of nucleic acids, degradation of purine	1L
		and pyrimidine nucleotides. Inhibitors of nucleotide	
		metabolism.	
	4.5	Disorders of purine and pyrimidine metabolism –	3L
		Lesch-Nyhan, syndrome, Gout, SCID, adenosine	
	\circ	deaminase deficiency	
	4.6	Integration of metabolism	1L
	4.6.1	Integration of metabolic pathways (carbohydrate,	2L
		lipid and amino acid metabolic pathways), tissue	
		specific metabolism (brain, muscle, and liver).	
	_	Practicals – RPSBCHP301	2 Credits
	1	Estimation of glucose by the GOD-POD method	
	2	Study of glucose metabolism using handheld	
	_	glucometer	
	3	Estimation of amino acids by ninhydrin	
	4	Estimation of serum urea by diacetyl monoxime	
		method	

5	Estimation of serum creatinine by alkaline picrate	
	method	
6	Assay of glutamate dehydrogenase	
7	Estimation of serum uric acid by phosphotungstic	
	acid method (Caraways method)	
8	Use of softwares to understand metabolism –	
	KEGG, Ecocyc, Metacyc, Biocyc	

- 1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York), ISBN:13:978-1-4641-0962-1 / ISBN:10:1-4641-0962-
- 2. Textbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M., John Wiley & Sons, Inc. (New Jersey), ISBN:978-0-470-28173-4.
- 3. Biochemistry (2012) 7th ed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freemanand Company (New York), ISBN:10:1-4292-2936-5, ISBN:13:978-1-4292-2936-4.
- 4. Principles of Biochemistry by G. Zubay, W. Parson, D.
- AN W 5. Biochemistry - Voet, D. and Voet, J.G. - John Wiley & Sons, Inc. USA.

Course Title: Clinical Biochemistry

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	The student will learn and understand the basics of circulatory
	system including haematopoiesis, homeostasis, and diseases of
	blood.
CO 2	Explain the fundamentals, composition and significance of Body
	fluids
CO 3	To get acquainted with the role of enzymes in diagnosis of various
	diseases.
CO 4	The student will be aware of the organ function tests available for
	detection of their functionality
CO 5	Illustrate Pathophysiology of certain disorders related to certain
	organs & Clinical tests available for detection

Course	Unit	Course/ Unit Title	Credits/
Code/		Clinical Biochemistry	Lectures
Unit		RPSBCH302	4 Credits
	01	Haematopoiesis & related disorders	15L
	1.1	Introduction to Haematopoiesis	1L
	1.1.1	Erythropoiesis - Stages of development of	2L
		erythrocytes, Precursors of RBCs, Factors	
BILL		influencing erythropoiesis	
	1.1.2	Role of erythropoietin	
ı	1.2	Haemoglobin (Hb)-Features, varieties, combination	4L
		of Hb with gases, Haeme-haeme interactions	
	1.2.1	Biosynthesis of Haemoglobin (with structures)	
	1.2.3	Biochemical pathway for Porphyrin synthesis,	
		formation of Haeme	
	1.3	Haeme catabolism	2L
	1.4	Haemoglobinopathies	2L

	1.4.1	Genetics basis of haemoglobinopathies - Sickle	
		cell anemia, Thalassemia – alpha (Subtypes of	
		alpha thalassemia) & beta	
	1.5	Blood gas analysis	1L
	1.5.1	Leucopoiesis, Leucocytosis and factors	2L
		responsible, Leukopenia, Thrombopoiesis,	
		Thrombocytopenia	
	1.6	Molecular mechanism of blood coagulation, role of	1L
		vitamin K in coagulation, anticoagulant and	
		fibrinolytic systems, haemophilia and thrombosis	
	2	Biochemistry of body Fluids & related	15L
		disroders	
	2.1	Plasma	3L
	2.1.1	Composition, Separation of plasma proteins –	
		Salting out, Cohn's fractionation, Electrophoresis	
	2.1.3	Characteristics, functions and clinical significance	
		of plasma proteins	
	2.2	Proteinuria – types & causes	1L
	2.3	Bile	4L
	2.3.1	Bile pigments- Biliverdin and Bilirubin	
	2.3.2	(formation, transport, conjugation in liver cells,	
		secretion in bile, excretion)	
	2.3.3	Clinical importance of bile formation (concept -	
II		index of rate of haeme catabolism, shunt	
		hyperbilirubinaemia, bilirubin encephalopathy)	
	2.4	Lymph- Formation, composition and circulation	1L
	2.5	CSF- Composition, Appearance, Pressure of CSF	2L
		and Biochemical Changes in CSF and its clinical	
	. 5	significance	
	2.6	Synovial fluid- Composition, Classification and	1L
	OY^	Clinical significance – synovial fluid viscosity,	
		pathology	
	2.6.1	Analysis – mucin clot test, microscopic analysis	1L
	2.7	Pericardial fluid- Composition, Function &	2L
Ca,		Pericardiocentesis, Pericardial effusion, Ischemic	
		heart disease	
-	3	Enzymes & isoenzymes of clinical importance	15L
	3.1	Introduction, Possible mechanisms responsible for	4L
III		abnormal enzyme levels	
	3.2	Value of serum enzyme assay in clinical practice	
	0.2	Enzyme assays of clinical significance	

	3.3	Myocardial infarction – Creatine phosphokinase, S-	4L
		GOT, LDH. Important cardiac markers useful in	
		diagnosis of acute myocardial infarctions	
	3.4	GI tract diseases - Serum amylase, serum lipase	2L
	3.5	Liver diseases – Serum transaminases	
	3.6	Muscle diseases – Serum aldolase, serum CPK	2L
	3.7	Bone diseases – Serum alkaline phosphatases	
	3.8	Malignancies – Acid phosphatase, β-glucuronidase	1L
	3.9	Value & clinical significance of isoenzymes of –	2L
		LDH, CPK, Alkaline phosphatase	
	4	Organ Function Tests	15L
	4.1	Renal Function test Preliminary investigations	2L
		Classification of renal function tests – Tests based	
		on glomerular filtration, Tests to measure Renal	
		Plasma Flow, Tests based on tubular function	
	4.2	Liver Function test	2L
		Tests based on abnormalities of bile pigment	
		metabolism - VD Bergh Reaction, Determination of	
		Serum Bilirubin	
		Tests based on liver's part in carbohydrate	
		metabolism – Glucose tolerance test, Galactose	
		tolerance test, Fructose tolerance test	
	4.3	Tests based on changes in plasma proteins –	3L
10.7		Determination of Total Plasma Proteins and	
IV		Albumin and Globulin and A:G Ratio, Estimation of	
		Plasma Fibrinogen, Flocculation Tests, Amino	
		acids in urine	
	4.4	Tests based on abnormalities of lipids -	2L
		Determination of serum cholesterol and ester	
		cholesterol and their ratio, Determination of faecal	
		fats	
	4.5	Tests based on detoxicating function of liver -	2L
		Hippuric acid synthesis test	
16	4.6	Gastric Function test – Fractional gastric analysis,	2L
MI.		stimulation tests	
	4.7	Thyroid Function test	2L
			i e
		Tests based on primary function of thyroid, Tests	

	Practicals – RPSBCHP302	2 Credits
1	Enumeration of Blood cells: RBC and WBC	
	counting	
2	Qualitative analysis of bile	
3	Estimation of serum electrolytes	
4	Estimation of blood glucose by ortho-toluidine	
	mono step method	
5	Estimation of serum phosphorus by Fiske	
	Subbarow method	, (^)
6	Estimation of serum Calcium by Trinder's method	
7	Estimation of serum iron by dipyridyl method	
8	Clinical analysis of CSF – glucose, proteins,	
	chlorides) `
9	Liver Function Tests –	
	a) Estimation of serum ALT and AST	
	b) Estimation of total and direct bilirubin	
	c) Estimation of serum alkaline phosphatase	
	d) Estimation of total proteins, albumin and	
	determination of A/G ratio	
	e) Estimation of serum albumin by Bromocresol	
	Green (BCG) binding method	
10	Renal Function tests	
	a) Creatinine clearance test	
	b) Urea clearance test	
11	Pancreatic Function Test	
	a) Estimation of serum amylase activity	
	b) Glucose Tolerance Test	
12	Estimation of serum total cholesterol and HDL	
	cholesterol	
13	Estimation of triglycerides	

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York), ISBN: 978-0-4710-28173-4.
- 2. Introduction to Human Physiology (2013) 8th edition; Lauralee Sherwood. Brooks/Cole, Cengage Learning.
- 3. The World of the cell, 7th edition (2009)
- 4. Genetics (2012) Snustad and Simmons
- 5. Urinalysis and Body Fluids by Susan King Strasinger & Marjorie Schaub Di Lorenzo, 6th Edition
- 6. Graff's Textbook of Urinalysis and Body Fluids Lillian A. Mundt & Kristy Shanahan, 2nd Edition
- 7. Fundamentals of the study of urine and body fluids Nancy A. Brunzel, 3rd Edition,

Elsevier

- 8. A Textbook of Medical Biochemistry MN Chatterjea & Rana Shinde, 8th Edition, Jaypee Publication
- 9. Clinical Biochemistry Metabolic and Clinical Aspects by William J. Marshall, Márta Lapsley, Andrew Day, Ruth Ayling
- A. 5th
 MA Princip 10. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA Principles of

Course Title: Molecular biology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE	DESCRIPTION
CO 1	Understand the mechanism of cell cycle, relationship of cell cycle
	and programmed cell death via intracellular and extracellular control
	mechanisms
CO 2	The students will learn about nucleic acid as genetic information
	carriers, Possible modes of replication, and roles of helicase,
	primase, gyrase, topoisomerase, DNA Polymerase, DNA ligase,
	and Regulation of replication.
CO 3	The student will be able to illustrate the mechanism of prokaryotic
	and eukaryotic replications
CO 4	The student will learn & understand different types of mutations,
	agents causing mutations and disorders resulting from mutations.
CO 5	Comprehend the mechanism and regulation of transcription in
	prokaryotes along with Reverse transcription.
CO 6	The student will be able to describe synthesis of protein from gene
	with the help of regulatory protein
CO 7	The student will be able to explain the Post transcriptional &
	translational modifications & their significance in stability

Course	Unit	Course/ Unit Title	Credits/
Code/		Molecular Biology	Lectures
Unit		RPSBCH303	4 Credits
	1	Prokaryotic and eukaryotic Transcription &	15L
		Post-transcriptional Modifications	
	1.1	Overview of Transcription	1L
I	1.2.1	Role of Prokaryotic RNA polymerase and	4L
		promoter; Upstream regulatory sequences	
	1.2.2	Stages of transcription: Initiation, elongation and	
		termination (Rho dependent & Rho independent)	

	400	Circuitian and Circums factor. Company of Abouting	
	1.2.3	Significance of Sigma factor, Concept of Abortive initiation	
	1.3	Transcription in eukaryotes	3L
	1.3.1	Role of promoter & regulatory elements	
	1.3.2	Eukaryotic RNA polymerases and Cis acting &	
		Trans acting elements	
	1.3.3	Mechanism of RNA transcription in eukaryotes -	
		Formation of pre-initiation complex, initiation,	
		elongation and termination	/()
	1.4	RNA Modification	1L
	1.4.1	Mechanism of addition of 5'-cap & formation of poly	
		A tail	
	1.4.2	Molecular mechanism of mRNA Splicing	1L
	1.4.3	RNA Processing of rRNA & tRNA	1L
	1.4.4	RNA editing - Base modifications	1L
	1.5	Role of Inhibitor -Rifampicin, Actinomycin D	1L
	1.6	Reverse transcription (Mechanism, significance &	2L
		application)	
	2	Prokaryotic and eukaryotic Translation & Post-	15L
		translational Modifications	
	2.1	Genetic basis of protein biosynthesis - Concept of	4L
		structural gene & Protein, Characteristics of	
		Genetic code	
	2.2	Ribosome assembly & structure (Comparison	
		between prokaryotic & eukaryotic ribosome)	
	2.3	tRNA – structural features and tRNA synthetase,	2L
		initiator tRNA, activation of amino acids	
II	2.4.1	Mechanism of translation in prokaryotes: Initiation,	3L
	. 5	elongation & termination	
	2.4.2	Concept of Polyribosome	
	2.5	Mechanism of eukaryotic translation: Initiation,	2L
		elongation & termination	
	2.6	Inhibitors of translation (prokaryotes & eukaryotes)	1L
	2.7	Post translational modifications of proteins	1L
W.	2.8.1	Signal hypothesis	2L
	2.8.2	Role of signal peptide & its role in Protein sorting	
	2.9	Protein localization in Nucleus	
	3	Gene regulation in prokaryotes	15L
	3.1.1	Principles of gene regulation, Constitutive &	3L
III		inducible genes, one cistron-one subunit concept	
""	3.1.2	Negative and positive regulation	
		Concept of anarona, regulatory proteins, estimators	2L
	3.2	Concept of operons, regulatory proteins, activators,	ZL.

	3.3	Lac operon – Structure, inducers (allolactose,	3L
		IPTG), Negative control & Positive control of lac	
		operon	
	3.4	Tryptophan operon – structure & regulation	2L
	3.5	Arabinose operon – structure, function & regulation	2L
	3.6	Regulatory RNAs in bacteria, small RNA and	3L
		riboswitches	
	4	Gene regulation in eukaryotes	15L
	4.1.1	Role of regulatory transcription factors in	2L
		eukaryotic gene regulation-general TF and	
		Regulatory TF, TFIID and Mediator	
	4.1.2	Modulation of the function of regulatory	2L
		transcription factors	
		Ligand modification	
		Protein protein interaction	
		Covalent modification	
	4.2.1	Gene regulation by chromatin remodelling –	4L
IV		removal of histone octamer nucleosome structure,	
		shifting of the nucleosome and changing the	
		canonical subunits of histone octamer for the non-	
		canonical subunits	
	4.2.2	Histone acetylation and deacetylation, Gene	
		silencing – DNA methylation	
	4.2.3	Regulation of galactose metabolism in yeast	2L
	4.2.4	Regulation by phosphorylation of nuclear	2L
		transcription factors	
	4.3	Regulatory RNAs in eukaryotes: synthesis and	3L
		mechanism of siRNA and miRNA	
		Practicals – RPSBCHP303	2 Credits
	1	To hydrolyze DNA and separate nucleotide bases	
		by paper chromatography	
	2	Isolation of chromosomal DNA from E coli cells	
	3	Qualitative Analysis of DNA by AGE	
	4	Designing of Oligonucleotide primers for PCR	
BI.	5	Amplification of a DNA fragment by PCR	
	6	Cytochemical staining of RNA by Methyl Green	
		Pyronin	
	7	Total RNA isolation from Bacterial Cells	

1. Molecular Biology of the Gene (2008) 6th ed., Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. and Losick, R., Cold Spring Harbor Laboratory Press, Cold Spring Harbor (New York), ISBN:0-321-50781 / ISBN: 978-0-321-50781-5.

- 2. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 3. Karp, G. 2010 Cell and Molecular Biology: Concepts and Experiments. 6 edition. John Wiley & Sons. Inc.
- 4. Alberts, B., Johnson, A., Lewis, J., and Enlarge, M. 2008 Molecular Biology of the Cell.
- 5. Genetics: Analysis & principles by Robert brooker 5th edition, McGraw-Hill Education, 201
- atic ott, Zipi 6. Molecular Cell Biology by Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky,

Course Title: Biology of diseases & Clinical Research

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	The student will able to understand the cooperative relationship
	between Biochemistry and Medicine
CO 2	Learn the factors in the spread of infectious diseases & Explain
	biology and pathogenesis of infectious agents
CO 3	Describe the Immune responses of body against various
	pathogenic organisms
CO 4	Recognize the Biochemical aspect of cancer, Assays for diagnosis
	& treatment
CO 5	Understand the Physiology of cardiovascular diseases
CO 6	Realize the importance of drug development through clinical
	research

Course	Unit	Course/ Unit Title	Credits/
Code/		Biology of diseases & Clinical Research	Lectures
Unit		RPSBCH304	4 Credits
	1	Infectious diseases	15L
	1.1	Bacterial infections: Tetanus, Diphtheria,	3L
		Tuberculosis, Typhoid, Cholera	
	1.2	Viral infection: Measles, Mumps, influenza, HIV	
	1.3	Protozoan: Malaria and Trypanosomiasis	3L
US.	1.4	Parasitic infection: Leishmaniasis	
$-\Theta_{II}$.	1.5	Treatment of infectious agents	
	1.5.1	Characteristics of an ideal chemotherapeutic agent	2L
	1.6	Mode of action of antibiotics on	
	1.6.1	Cell wall (Penicillin and Cephalosporins)	1L
	1.6.2	Cell Membrane (Polymyxin and Imidazole)	1L
	1.6.3	Protein Synthesis (Streptomycin, Tetracycline and	1L
		Chloramphenicol)	
	1.6.4	Nucleic acid (Quinolones, Nalidixic acid, Rifamycin)	1L

	1.6.5	Enzyme inhibitors (Trimethoprim)	1L
	1.7	Mechanisms of drug resistance- evolution,	2L
		pathways and origin	
	2	Cancer	15L
	2.1	Genetic basis of cancer	1L
	2.2	Experimental evidenced for transformation of cell	
	2.3	Oncogenes	3L
	2.3.1	Identification of chromosomal oncogene	
	2.3.2	Gain of function mutation	
	2.3.3	Conversion of proto-oncogene to oncogene	2L
	2.3.4	Missense mutation, Gene amplification,	
II		chromosomal translocation, viral integration	
	2.5	Tumor suppressor gene- Role of p53 and RB gene	2L
	2.6	Assays – Trypan blue exclusion method, MTT	3L
		assay, Soft Agar Colony Formation Assay	
	2.7	Molecular profiling for classification of cancer,	
	2.8	DNA microarray	
	2.9	Cancer therapy- Antimetabolites, Chemotherapy	4L
		(purine & pyrimidine analog), Demethylating agents	
	2.9.1	Cancer immunotherapy	
	3	Cardiovascular diseases	15L
	3.1	Definition; The origin of cardiovascular diseases	2L
		(electrical, structural and circulatory) and types of	
		CVDs	
	3.2	Defining the broad spectrum of Ailments	3L
	3.3	Stages of CVDs	
III	3.4	Molecular basis of CVDs - hypertension, coronary	5L
		heart (artery) disease, cerebrovascular disease,	
	1	cardiomyopathy, cardiac hypertrophy,	
		atherosclerosis, myocardial infarction.	
	3.5	Diagnosis and Treatment strategies: screening	5L
. 0		methods; Current treatment modalities and their	
. 2		advantages and disadvantages, major side effects;	
		Challenges of treatment. biomarkers for CVDs	
	4	Clinical research	15L
X	4.1	Introduction of Clinical Research	1L
	4.1.1	Clinical Trial Phases & Evaluation	2L
IV		Role of Placebo	
		Interpretation of clinical data, Meta-analysis	
	4.1.2	Pharmacological Principal of Clinical Research	2L
		Drug Development And Launch	
	4.1.3	Clinical Trial Design and Project Managements	1L

4	4.2	Drug Invention; New Drug Development and Drug	2L
		Assay	
4	4.2.1	Animal Toxicity studies: Systemic toxicity studies,	
		Local toxicity studies & Specialised toxicity studies	
		Interpretation of animal data, Subjective responses	
4	4.2.2	Drug Assay:	2L
		1. Chemical	
		2. Biological – Indication, Principle, Types &	
		Biostandardisation	,(^)
		Immunological	
4	4.3	Radio-receptor assays & ELISA	1L
4	4.4	Essential documents in Clinical Research and	4L
		Regulatory Requirements	
4	4.4.1	IND Application	
4	4.4.2	NDA Application	
4	4.4.3	Informed Consent process and Documentation	
4	4.4.4	Clinical Study Report	
		Practicals – RPSBCHP304	2 Credits
	1	WIDAL test – Qualitative & Quantitative	
	2	Antibiotic testing by agar well method	
	3	Determination of MIC of antibiotic	
	4	Separation of isoenzymes of LDH by	
		electrophoresis.	
	5	Visualization of cells by methylene blue	
	6	Study of viability of cells using Neutral red Assay	
	7	Case studies on clinical research	

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York), ISBN: 978-0-4710-28173-4.
- 2. Immunology: A Short Course (2009) 6th ed., Coico, R and Sunshine, G., John Wiley&sons, Inc (New Jersey), ISBN: 978-0-470-08158-7
- 3. Biochemistry (2012) 7th ed., Berg, J.M., Tymoczko, J.L. and Stryer, L., W.H Freeman and Company (New York), ISBN: 13:978-1-4292-7635-1.
- 4. Genetics (2012) 6th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons. (Singapore), ISBN: 978-1-118-09242-2.
- 5. Genetics Analysis and Principles by Robert J. Brooker
- 6. Concepts of Genetics by William S. Klug, Michael R. Cummings, Charlotte A. Spencer, Michael A. Palladino, Darrell Killian
- 7. Textbook of Pharmacology F.S.K Barar

- 8. Molecular Biology of Cancer Mechanisms, Targets, and Therapeutics by Lauren Pecorino
- 9. Clinical Trials, Second Edition_ Study Design, Endpoints and Biomarkers, Drug Safety, and FDA and ICH Guidelines - Tom Brody
- 10. Early Drug Development Strategies and Routes to First-in-Human Trials by Mitchell N. Cayen
- N. Rege.

Modality of Assessment (SEMESTER III)

Theory Examination Pattern:

- A) Internal Assessment- 40%- 40 Marks
- B) External Examination- 60%- 60 Marks
 Semester End Theory Examination: (Deviation from the usual modality)
 Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.
 - 1. Duration These examinations shall be of **02** ½ **HOURS** duration.
 - 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	LINIT
Q1. B	Any 2 out of 3	06	UNIT I
Q2. A	Any 1 out of 2	03	LINUTU
Q2. B	Any 2 out of 3	06	UNIT II
Q3. A	Any 1 out of 2	03	
Q3. B	Any 2 out of 3	06	UNIT III
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	UNIT IV
	TOTAL	60	
PANNARA			

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern Semester III

Course	3	01		3	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	303			3	04		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course Title: Human Physiology & Developmental Biology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	The student will learn and understand the basic concepts of nutrition,
	and nutritional values of foods, and Basal metabolic rate and
	measurement of energy requirements.
CO 2	Deduce the dietary requirement of carbohydrates, lipids and
	proteins and their biological significance
CO 3	The course will also aid to learn the nutritional requirement and
	significance of dietary minerals like macroelements and
	microelements
CO 5	Understand the condition of malnutrition, its prevention, and
	recommended dietary allowances.
CO 6	Students will be learning topics like Introduction to nutrition,
	Macroelements, Microelements and Nutrigenomics, Nutritional
	disorders and Antinutritional Factors

Course	Unit	Course/ Unit Title	Credits/
Code/		Human Physiology & Developmental	Lectures
Unit	27	Biology	4 Credits
		RPSBCH401	
16	1	Musculoskeletal system and its related	15L
MI.		disorders	
	1.1	Bones- Composition, formulation, Structure and	3L
		functions	
	1.2	Bone's role in calcium homeostasis, factors	
		affecting bone metabolism, bone remodeling	
	1.3	Diseases related to bone - Osteogenesis	3L
		imperfecta, osteoporosis, osteomalacia, Fibrous	
		dysplasia, Osteomyelitis	

1.4 Physiology of muscle contraction in striated and non-striated muscle 1.4.1 Types of muscles: ultrastructure of smooth, skeletal and cardiac muscle fibers 1.4.2 Muscle proteins, organization of contractile protein and definition of sarcomeres 1.4.3 Mechanism of muscle contraction, excitation of striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 15L 2.1 Pericardium - Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle - Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation - Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic potentials: excitatory and inhibitory 2 L				
1.4.1 Types of muscles: ultrastructure of smooth, skeletal and cardiac muscle fibers 1.4.2 Muscle proteins, organization of contractile protein and definition of sarcomeres 1.4.3 Mechanism of muscle contraction, excitation of striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 15L 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4		3L
I 1.4.2 Muscle proteins, organization of contractile protein and definition of sarcomeres 1.4.3 Mechanism of muscle contraction, excitation of striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 2.1 Pericardium - Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle - Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation - Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		4 4 4		
1.4.2 Muscle proteins, organization of contractile protein and definition of sarcomeres		1.4.1		
and definition of sarcomeres 1.4.3 Mechanism of muscle contraction, excitation of striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1 1 2		
1.4.3 Mechanism of muscle contraction, excitation of striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 1.5L 2.1 Pericardium - Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle - Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation - Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4.2	<u> </u>	
striated muscles 1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		4.40		41
1.4.4 Energetics of muscle contraction, regulation of skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4.3		4L
skeletal muscle contraction 1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 15L 2.1 Pericardium - Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle - Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation - Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		4 4 4		C
1.4.5 Calmodulin and its regulatory role 1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 15L 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4.4		
1.4.6 Diseases related to muscle - muscular dystrophies, myositis 2 Cardiovascular Physiology 15L 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 3. Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		4.4.5		
dystrophies, myositis 2 Cardiovascular Physiology 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4.5	Calmodulin and its regulatory role	
2 Cardiovascular Physiology 2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		1.4.6	Diseases related to muscle - muscular	2L
2.1 Pericardium – Structure, function and clinical significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic			dystrophies, myositis	
significance 2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		2	Cardiovascular Physiology	15L
2.2 Cardiac muscle tissue, difference in atrial and ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		2.1	Pericardium – Structure, function and clinical	2L
ventricular cardiac muscle, clinical significance 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic			significance	
III 2.3.1 Action potentials in cardiac muscle – Causes, Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		2.2	Cardiac muscle tissue, difference in atrial and	2L
Phases 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2.1			ventricular cardiac muscle, clinical significance	
II 2.3.2 Velocity of signal conduction, Refractory period of cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		2.3.1	Action potentials in cardiac muscle – Causes,	4L
cardiac muscle 2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2.1				
2.5 Function of Ca2+ ions and transverse tubules in excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic		2.3.2		
excitation-contraction coupling 2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic				
2.6.1 Physical characteristics of the circulation 2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L		2.5		
2.6.2 Basic principles of circulatory function 2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L			1 7	
2.6.3 Interrelationships of pressure, flow and resistance 2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L				4L
2.7 Vascular distensibility 2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L				
2.8 Microcirculation – Structure and capillary system 3 Neurophysiology and its related disorders 3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L		2.6.3	Interrelationships of pressure, flow and resistance	
3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L			·	3L
3.1 Nervous system and its classification 3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L				
3.2 Neuron - Structure and maintenance of neurons, Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L				
Functional classes of neurons 3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L			-	3L
3.3 Non-neuronal cells and nerve tissue 3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L	. 0	3.2	·	
3.4 Membrane potentials: Resting Membrane Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L	1691			
Potential, Graded potentials, Action potential 3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L		3.3	Non-neuronal cells and nerve tissue	
3.5 Transmission of nerve impulse, role of Ca+2 in release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L		3.4	Membrane potentials: Resting Membrane	5L
release of neurotransmitter from pre-synaptic membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L	M		Potential, Graded potentials, Action potential	
membrane, function of receptor proteins and secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L		3.5	Transmission of nerve impulse, role of Ca+2 in	
secondary messengers on the postsynaptic neuron 3.6 Chemical & electrical synapse, Post-synaptic 2L			release of neurotransmitter from pre-synaptic	
3.6 Chemical & electrical synapse, Post-synaptic 2L			membrane, function of receptor proteins and	
			secondary messengers on the postsynaptic neuron	
potentials: excitatory and inhibitory		3.6	Chemical & electrical synapse, Post-synaptic	2L
			potentials: excitatory and inhibitory	

	3.7	Characteristics of some important	3L
		neurotransmitters (Acetylcholine, Glycine, GABA,	
		Aspartate, Glutamate, Catecholamines)	
	3.8	Disorders related to defects in neurotransmission—	2L
		Parkinson's disease, stroke, Alzheimer's disease	
		Developmental Biology	15L
		Basic concepts of development : Potency,	2L
		commitment, specification, induction, competence,	
		determination and differentiation	.(^)
		Morphogenetic gradients; cell fate and cell	2L
		lineages; genomic equivalence and the	
		cytoplasmic determinants	
IV		Gametogenesis, fertilization (in humans & sea	3L
IV		urchin)	
		Early development, cell surface molecules in	3L
		sperm-egg recognition in animals	
		Embryonic cleavage	2L
		Formation of germ layers in animals	
		Sexual reproduction in plants - Gametogenesis,	3L
		double fertilization in plants	

- 1. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York), ISBN: 978-0-07-128366-3.
- 2. Harper's Biochemistry (2012) 29th ed., Murray, R.K., Granner, D.K., Mayes and P.A., Rodwell, V.W., Lange Medical Books/McGraw Hill. ISBN:978-0-07-176-576-3.
- 3. Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi). ISBN: 978-1-4160-4574-8.
- 4. Fundamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco), ISBN: 10:0-321-53910-9 / ISBN: 13: 978-0321-53910-6.

Course Title: Endocrinology

Academic year 2021-22

COURSE OUTCOMES:

: After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Study the historical experiments that lead to the discovery of various hormones
CO 2	Deeply understand the communication between the nervous system and the endocrine system
CO 3	Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones.
CO 4	Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause.
CO 5	Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception.
CO 6	Present a case study on a hormonal and a metabolic disorder

Course	Unit	Course/ Unit Title	Credits/
Code/		Endocrinology	Lectures
Unit		RPSBCH402	4 Credits
M	1	Introduction to Endocrinology & cellular signalling	15L
" BII.	1.1	Functions of hormones and their regulation	2L
	1.2	Chemical signaling - endocrine, paracrine,	
		autocrine, intracrine and neuroendocrine	
1		mechanisms	
	1.3	Chemical classification of hormones, transport of	1L
		hormones in the circulation and their half-lives	
	1.4	Hormone receptors - extracellular and intracellular	3L
	1.4.1	Receptor - hormone binding, Scatchard analysis	

	1.4.2	G protein coupled receptors, G proteins, second	4L
		messengers - cAMP, cGMP, IP3, DAG, Ca ²⁺	-
	1.5	Effector systems - adenyl cyclase, guanyl cyclase,	
		PDE, PLC	
	1.5.1	Protein kinases (PKA, PKB, PKC, PKG)	
	1.5.2	Receptor tyrosine kinases - EGF, insulin and Ras -	4L
		MAP kinase cascade	
	1.5.3	Non receptor tyrosine kinase-erythropoietin	
		receptor JAK - STAT pathway	
	1.6	Steroid hormone Receptor	1L
	2	Hypothalamic- hypophysial system and	15L
		Hormones of the adrenals	
	2.1	Hypothalamic - Pituitary axis: anatomy, histology,	2L
		vasculature and secretions	
	2.2.1	Physiological and biochemical actions of	
		hypothalamic hormones and Anterior pituitary	
		hormones	
	2.2.2	Hormone feed- back regulatory cascade	
	2.3.1	Posterior pituitary hormones –structure, physiology	3L
	2.3.2	Biochemical actions of AVP and Oxytocin;	
		Diabetes insipidus	
	2.4	Histology of Adrenal Gland	2L
ll II	2.5	Physiology and action of Aldosterone; the Renin	
		Angiotensin System	
	2.6.1	Physiology and Biochemical actions of Cortisol	2L
	2.6.2	Regulation of cortisol synthesis: POMC and CRH	
	2.7.1	Adrenal medullary Hormones: Epinephrine and	2L
		Norepinephrine	
	2.7.2	The Fight or flight response; Dual receptor	
		hypothesis	
	2.8	General adaptation syndrome: acute and chronic	3L
	(-)	stress response	
	2.9	Pathophysiology – Addison's disease, Conn's	
US,		syndrome, Cushing syndrome.	
	3	Hormones regulating Metabolism, Calcium	15L
		homeostasis and Growth	
	3.1.1	Thyroid gland- Histology	3L
III	3.1.2	Biosynthesis of thyroid hormone and its regulation:	
		Role of TRH and TSH in T4 synthesis and	
		response	
	3.1.3	Physiological and biochemical action of Thyroxine	
	2.6.2 2.7.1 2.7.2 2.8 2.9 3.1.1 3.1.2	Physiology and Biochemical actions of Cortisol Regulation of cortisol synthesis: POMC and CRH Adrenal medullary Hormones: Epinephrine and Norepinephrine The Fight or flight response; Dual receptor hypothesis General adaptation syndrome: acute and chronic stress response Pathophysiology – Addison's disease, Conn's syndrome, Cushing syndrome. Hormones regulating Metabolism, Calcium homeostasis and Growth Thyroid gland- Histology Biosynthesis of thyroid hormone and its regulation: Role of TRH and TSH in T4 synthesis and response	2L 3L 15L

	3.1.4	Pathophysiology of thyroxine secretion: Hyper and	3L
		hypothyroidism, Goitre, Graves' disease,	
		Cretinism, Myxoedema	
	3.2.1	Regulation of calcium homeostasis: PTH, Vitamin	3L
		D and calcitonin	
	3.2.2	Mechanism of Ca2+ regulation and pathways	
		involving bone, skin, liver, gut and kidneys	
	3.2.3	Pathophysiology - rickets, osteomalacia,	3L
		osteoporosis	
	3.3	Regulation of Growth: growth hormone and	
		somatomedin	
	3.4	Endocrine disorders - gigantism, acromegaly, dwarfism, pygmies	4L
	3.5	1,12	
	3.5	Physiology and biochemical actions of Growth	
	4	factors- EGF, PDGF and EPO	15L
	4	Pancreatic, GI tract and Reproductive hormones	IDL
	4.1	Cells involved in release of gastrointestinal	3L
		hormones	
	4.1.1	Gastrin family of hormones	
	4.1.2	CCK: the secretin family of hormones	
	4.1.3	Incretins; Ghrelin	
	4.2	Summary of hormone metabolite control of GI	2L
		function	
	4.3	Hormones of the Pancreas: Structure, synthesis,	
		physiology and biochemical actions of insulin and	
N/		glucagon	
IV	4.4	Adipocyte hormones: Adiponectin and leptin;	3L
		Appetite and satiety control	
		·	1
	4.5	Pathophysiology Type I and type II Diabetes	
	4.5	Pathophysiology Type I and type II Diabetes mellitus, Obesity and Metabolic syndrome	
	4.5		4L
P	N	mellitus, Obesity and Metabolic syndrome	4L
NAP.	4.6	mellitus, Obesity and Metabolic syndrome Male and female sex hormones	4L
MAR	4.6	mellitus, Obesity and Metabolic syndrome Male and female sex hormones Interplay of hormones during ovarian and uterine	4L
DINIA	4.6 4.6.1	mellitus, Obesity and Metabolic syndrome Male and female sex hormones Interplay of hormones during ovarian and uterine phases of menstrual cycle Placental hormones; role of hormones during	4L
AMAR	4.6 4.6.1	mellitus, Obesity and Metabolic syndrome Male and female sex hormones Interplay of hormones during ovarian and uterine phases of menstrual cycle	4L 3L
AMAR	4.6 4.6.1 4.6.2	mellitus, Obesity and Metabolic syndrome Male and female sex hormones Interplay of hormones during ovarian and uterine phases of menstrual cycle Placental hormones; role of hormones during parturition and lactation	

	PRACTICALS	
RPSBCHP401	Project Work	4 Credits
&		
RPSBCHP402		
	GUIDELINE TO CARRY OUT PROJECTWORK	
	The main purpose of introduction of Project Work at MSc II is to insulate and a selection of Project Work at MSc II	
	is to inculcate research culture. It will also make the students	
	familiar with Research Methodology i.e. reference work, experimental work, data analysis of experimental data,	(')Y
	interpretation of results obtained, writing of project work and	
	compilation of bibliography in proper order.	
	2. Each student shall complete a small research project during	
	their academic year of MSc II. However, the initial reference	
	work for the project can be started in MSc I.	
	3. Nature of Research Project:- Experimental-based or	
	literature survey involving laboratory analytical work will be	
	considered as the Research Project.	
	4. Duration of Project work:- Using the infrastructure	
	available in Ramnarain Ruia Autonomous College the	
	duration to complete the project work will be from the	
	commencement of the project work till the end of January of	
	MSc II (Sem IV) academic year. The duration to complete the project work from any institute	
	apart from Ramnarain Ruia Autonomous College will be 03	
	months (This needs prior approval from the Department of	
	Biochemistry, Ramnarain Ruia Autonomous College).	
	5. Schedule for Submission of project Work:- Experimental	
	work or literature survey must be completed and the report	
	on the same (2 Copies) will have to be submitted by the end	
	of February of MSc II (Sem IV) academic year.	
	6. The project should be divided into the following parts:-	
	a) Certification of completion of Project Work	
	b) Acknowledgement	
	c) Introduction	
	d) Review of Related Literaturee) Aims and Objectives	
	f) Plan of work	
	g) Material and Methods	
	h) Results	
	i) Discussion & Conclusion	
	j) Future Prospects	
	k) Bibliography	
	7. The project will be assessed.	

GUIDELINE FOR THE ASSESMENT OF PROJECT WORK

- The practical 401 & 402 of Sem IV (Course Code No. RPSBCHP401 & RPSBCHP402) shall be exclusively devoted for the project.
- Each student will complete the project (2 copies) and get both the copies certified by the guiding teacher and the Head of Dept. (HOD) by February of MSc II (Sem IV) academic year.
- 3. One copy of the certified project will be submitted to the Department; while the other copy will be retained by the students for his/ her personal record.
- 4. 4. The candidate is required to present the Research Project to the examiner followed by Viva- Voce examination based on the project work by the examiner.
- The following Marking Scheme shall be considered while assessing the project work

	<u>Particular</u>		
a)	Project Work (Contents Submitted	50	
	in the bound form)		
b)	Presentation of Project Work to	30	
	Examiner		
c)	Viva- voce Exam based in Project	20	
	Work		
	T <u>OTAL</u>	100	

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (NewYork), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.
- 2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.
- 3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5.
- 4. Guyton and Hall Textbook of Medical Physiology 13th Edition by John E. Hall, Elsevier
- 5. Harrison's Endocrinology, Second Edition by J. Larry Jameson
- 6. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Course Title: Genetic Engineering & Biotechnology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE OUTCOME	DESCRIPTION
CO 1	Acquire wide knowledge about Recombinant DNA technology by studying about various Vectors and Restriction Enzymes involved.
CO 2	Study of Various Expression Systems and Molecular Markers
CO 3	Apply the fundamental knowledge to understand Application of R-DNA technology and use of Restriction enzymes in construction of various vectors and libraries such as c-DNA & Genomic libraries
CO 4	Recognize the importance of Screening of the libraries with the help of "Reporter Genes" and Molecular Markers such as RFLP,RAPD, AFLP.
CO 5	Analyse and Interpret the knowledge about Genetic engineering and prospects of improving crop productivity, resistance, resistance to disease and environmental stresses, methods for production of transgenic animals.
CO 6	Develop innovative methods & Apply learned knowledge to their future research

Course	Unit	Course/ Unit Title	Credits/
Code/	(27)	Genetic Engineering & Biotechnology	Lectures
Unit		RPSBCH403	4 Credits
	1	Introduction to RDT & cloning vectors	15L
	1.1	Overview of RDT, Extraction and purification of	3L
		plasmid and bacteriophage DNA	
		Restriction and modification systems, restriction	
		endonucleases, Concept of sticky ends, blunt ends	
•	1.2	Other enzymes used in manipulating DNA	4L
		molecules:	
		Terminal transferases, linkers and adapters,	
		homopolymer tailing	
	1.3	Reverse transcriptase	

	1.3.1	DNA ligase, Ligation of DNA molecules	
	1.3.2	Synthetic oligonucleotides - synthesis and use	2L
1.3.3		Plasmids and bacteriophages as vectors for gene cloning	4L
	1.4	Cloning vectors based on E. coli plasmids, pBR322, pUC8, pGEM3Z	
	1.5	Cloning vectors based on M13 and λ	
		bacteriophage, and in vitro packaging Vectors for	
		yeast, Ti-plasmid, and retroviral vectors, high	. (^
		capacity vectors	
	1.5.1	BAC and YAC	2L
	2	Gene transfer processes, selection for	15L
		recombinants & clone identification	
	2.1	Transformation	3L
	2.1.1	Preparation of competent cells using	
		transformation and selection for transformed cells	
	2.1.2	Identification for recombinants - insertional	•
		inactivation, blue-white selection Conjugation (F+&	
		F cells)	
	2.2.1	Mechanism of conjugation in Hfr strains	3L
	2.2.2	Interrupted mating experiment technique	•
	2.2.3	Problems based on above concept	•
	2.2.4	Transduction (Generalized & Specialized)	
II	2.3	Introduction of phage DNA into bacterial cells	2L
	2.3.1	Identification of recombinant phages	•
	2.3.2	Transfection	•
	2.4	Transient and stable transfection	5L
	2.4.1	Chemical and physical methods of transfection	
	2.4.2	The problem of selection, direct selection, marker	
		rescue.	
	2.4.3	cDNA and Genomic libraries, identification of a	•
<	27	clone from gene library, colony and plaque	
. 0		hybridization probing, Southern and Northern	
169		hybridization	
	2.5	Methods based on detection of the translation	2L
		product of the cloned gene	
	3	Expression of cloned genes, PCR & DNA	15L
		sequencing	
	3.1.1	Vectors for expression of foreign genes in E. coli,	3L
III		cassettes and gene fusions	
	3.1.2	Challenges in producing recombinant protein in E. coli	
	3.2	Production of recombinant protein by eukaryotic	4L
		cells	

		T	
	3.2.1	Fusion tags such as, poly-histidine, glutathione,	
		maltose binding protein and their role in purification	
		of recombinant proteins	
3.3.1		Fundamentals of polymerase chain reaction	5L
		Types of PCR – hot start, multiplex, reverse	
		transcriptase PCR and Nested PCR, quantitative	
		PCR, Primer, designing for PCR, Cloning PCR	
		products	
	3.4	DNA sequencing by Sanger's method, Automated	3L
		Sanger's DNA sequencing, Pyrosequencing	
	4	Application of genetic engineering in	15L
		Biotechnology	
	4.1	Site-directed mutagenesis (original method,	4L
		Kunkel's method, cassette mutagenesis, PCR	
		oligonucleotide mutagenesis), Protein engineering	
		(T4-lysozyme), yeast two hybrid systems	
	4.2	Production of recombinant pharmaceuticals such	2L
		as insulin, human growth hormone (original,	
		receptor fragment-hormone coupled, albutropin),	
		factor VIII.	
IV	4.3	Recombinant vaccines	1L
	4.4	Gene therapy & its application	1L
	4.5	Applications in agriculture – Bt cotton, problems	3L
		with genetically modified plants, glyphosate	
		herbicide resistant crops, ethical & safety concerns	
	4.6	RDT in diagnosis and treatment of diseases	2L
	4.7	Model organisms: Escherichia coli,	2L
		Saccharomyces cerevisiae, Drosophila	
		melanogaster, Caenorhabditis elegans, Danio rerio	
	. 5	and Arabidopsis thaliana	
		Practicals – RPSBCHP403	2 Credits
	21	Isolation of plasmid DNA from E. coli cells	
	2	Separation of chromosomal & plasmid DNA using	
		agarose gel electrophoresis	
	3	Digestion of plasmid DNA with restriction enzymes	
CB1,	4	Preparation of competent cells (CaCl ₂ treatment)	
	5	Transformation of E. coli cells with plasmid DNA	
	6	Demonstration of complementation of	
		β-galactosidase for Blue and White selection	
	7	β-galactosidase Activity Assay in Permeabilized	
		Yeast	

- 1. Gene Cloning and DNA Analysis (2010) 6th ed., Brown, T.A., Wiley-Blackwell publishing (Oxford, UK), ISBN: 978-1-4051-8173-0.
- 2. Principles of Gene Manipulation and Genomics (2006) 7th ed., Primrose, S.B., and Twyman, R. M., Blackwell publishing (Oxford, UK) ISBN:13: 978-1-4051-3544-3.
- 3. Molecular Biotechnology: Principles and Applications of Recombinant DNA (2010) 4th ed., Glick B.R., Pasternak, J.J. and Patten, C.L., ASM Press (Washington DC), ISBN: 978-1-55581-498-4 (HC).
- 4. Genetic engineering and its applications, P. Joshi, Botania Publishers and Distributors
- 5. Recombinant DNA: A short course, Watson etal, Scientific Americal Books
- 6. Biotechnology Fundamentals and Applications, S.S.Purohitt, Agrobios Publishers, 2001.
- 7. Molecular Biology of the Gene: Watson, Baker, Bell, Gann, Levine, Losick; Pearson Benjamin Cummings & CSHL Press
- 8. Gene cloning & DNA analysis: an introduction; seventh edition; T A Brown; Wiley Blackwell publications

Course Title: Advanced immunology

Academic year 2021-22

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE	DESCRIPTION
OUTCOME	
CO 1	Learn the fundamental principles of immune response including
	molecular, biochemical and cellular basis of immune homeostasis
CO 2	Develop various aspects of immunological response and how its
	triggered and regulated
CO 3	Explain the specific interactions of Antigens and antibodies and the
	diversity of antibodies developed at the germ line DNA
CO 4	Complete knowledge of the molecular mechanisms and kinetics of
	the immune responses, both humoral and cell mediated immunity
CO 5	Enhance the knowledge of various immune-techniques ranging
	from precipitation and agglutination reactions to ELISA, Radio
	immunoassay and flow cytometry.
CO 6	The course will aid in understanding the principles of Graft
	rejection, Auto immunity and Antibody based therapy.

Course	Unit	Course/ Unit Title	Credits/
Code/	(2)	Advanced immunology	Lectures
Unit	27	RPSBCH404	4 Credits
	1	Antigen-Antibody Interactions and Complement	15L
1671		System	
	1.1.1	Overview of Antigens and Antibodies	1L
	1.1.2	Antigen- Antibody interactions: Forces involved,	2L
		antibody affinity, antibody avidity, Cross reactivity	
	1.1.3	Precipitation reactions – Oudins, Ouchterlony	2L
	1.1.4	Agglutination reactions: Blood typing, bacterial	
		agglutination, passive agglutination, agglutination	
		inhibition,	

	1.1.5	Immunoelectrophoresis: Principles of	3L
		Radioimmunoassay, ELISA, Immunofluorescence,	
		Western Blotting	
1.2		Complement system	
	1.2.1	Function and components	2L
	1.2.2	Complement activation - Classical, Alternate &	3L
		Lectin pathways.	
	1.2.3	Biological consequence of complement activation –	3L
		formation of MAC	<i>,</i> (5)
	2	MHC, Antigen processing and presentation &	451
	2	TCR	15L
	2.1	Major histocompatibility complex	
	2.1.1	MHC polymorphism & organization of MHC genes-	
		class I & class II	2L
	2.1.2	Cellular distribution & structure of class I & II	
		molecules	
	2.1.3	MHC and immune responsiveness – Determinant-	2L
		selection model and Holes-in-the-repertoire model	
	2.1.4	MHC and disease susceptibility (Hereditary	2L
II		haemochromatosis)	
	2.2	Antigen processing and presentation	4L
	2.2.1	Self MHC restriction of T cells	
	2.2.2	Cytosolic and endocytic pathway	
	2.2.3	Presentation of non-peptide antigens	
	2.3	T-cell Receptor	2L
	2.2.4	Structure, organization & rearrangement of TCR	
	2.3.1	genes	
	2.3.2	TCR receptor complex TCR – CD3	1L
	2.3.3	TCR accessory membrane molecules	1L
	2.3.4	Ternary TCR-peptide-MHC complex	1L
	3	B- and T-lymphocytes	15L
	3.1	T-cell Maturation	2L
	3.2	Thymic selection of T-cell repertoire – Positive and	3L
		negative selection, central issues in thymic	
Day.		selection	
	3.3	TH-cell activation	
	3.4	T-cell differentiation	1L
	3.5	Peripheral γδ T-cell	2L
	3.6	Cytotoxic T-cells	2L
	3.7	B-cell maturation	4L
	3.8	B-cell activation and proliferation – Thymus	
		dependent and Thymus independent	
	3.9	Formation of T-B conjugates	1L
	l	, 5	<u> </u>

	4 Cytokines & Immune response in health & diseases		15L
	4.1	Humoral and cell mediated immune response	2L
	4.1.1	Cytokines - Introduction, Properties	
	4.1.2	Cytokine receptors	3L
	4.1.3	Biological functions of cytokines	
	4.1.4	Therapies based on Cytokines	
	4.2	Hypersensitivity reactions	3L
IV	4.2.1	Gel & Coomb's classification - types of	
IV		hypersensitivity reactions	
	4.3	Transplantation immunology	3L
	4.3.1	Types of transplant; immunological basis of	
		allograft rejection.	
	4.4	Autoimmunity	4L
	4.4.1	Organ specific –Myasthenia gravis; Hashimotos	
		thyroiditis; Graves' Disease; Systemic –	
		Rheumatoid arthritis, Systemic lupus	
		erythematosus	
		Practicals – RPSBCHP404	2 Credits
	1	Preparation of blood smear and Differential	
		leucocyte count.	
	2	Separation of lymphocytes by Ficoll Hypaque	
		method	
	3	Lymphocyte viability testing by trypan blue	
	4	Assays based on precipitation reactions -	
		Ouchterlony double immunodiffusion (DID) and	
		Mancini radial immunodiffusion (SRID).	
	5	Assays based on agglutination reactions - Blood	
		typing (active) & passive agglutination (C reactive	
		protein kit & virtual lab).	
	6	Demonstration of Enzyme linked immunosorbent	
2		assay (ELISA) & DOT ELISA	
	7	Separation of serum proteins by PAGE	
	8	Virtual Lab to study immunological Techniques	

- Kuby Immunology (2007) 6th ed., Kindt, T.L., Goldsby, R.A. and Osborne, B.A., W.H Freeman and Company (New York), ISBN:13: 978-0-7167-8590-3 / ISBN: 10:0-7617-8590-0.
- 2. Immunology: A Short Course (2009) 6th ed., Coico, R and Sunshine, G., John Wiley& sons, Inc (New Jersey), ISBN: 978-0-470-08158-7.
- 3. Janeway's Immunobiology (2012) 8th ed., Murphy, K., Mowat, A., and Weaver, C.T., Garland Science (London & New York), ISBN: 978-0-8153-4243-4.

- 4. Willey, J. Sherwood L, Woolverton C, (2016), Prescott Microbiology. 10th Edition, McGraw-Hill Publisher, Columbus, OH
- 5. Pelczar Mi J., Chan, E.C.S., Krieg, NR, (2009). Microbiology, McGraw-Hill publisher
 - 6. Immunology C. V. Rao, Narosa Publishing House

Modality of Assessment (SEMESTER IV)

Theory Examination Pattern:

- A) Internal Assessment- 40%- 40 Marks
- B) External Examination- 60%- 60 Marks
 Semester End Theory Examination: (Deviation from the usual modality)
 Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.
 - 1. Duration These examinations shall be of **02** ½ **HOURS** duration.
 - 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on	
Q1. A	Any 1 out of 2	03	LINUT	
Q1. B	Any 2 out of 3	06	- UNIT I	
Q2. A	Any 1 out of 2	03	LINUTU	
Q2. B	Any 2 out of 3	06	UNIT II	
Q3. A	Any 1 out of 2	03	LINUTIU	
Q3. B	Any 2 out of 3	06	UNIT III	
Q4. A	Any 1 out of 2	03	LINUT IV	
Q4. B	Any 2 out of 3	06	- UNIT IV	
	TOTAL	60		

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern Semester IV

Course	401			402			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	403			404			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100
