Resolution No. AC/II(22-23).3.RPS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: MSc Part I

Program Code: RPSBCH

(As per the guidelines of National Education Policy 2020-

Academic year 2023-24)

GRADUATE ATTRIBUTES

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Master's Degree in Science program will be able to:
GA 1	Demonstrate in depth understanding in the relevant science discipline. Recall, explain, extrapolate, and organize conceptual scientific knowledge for execution and application and also to evaluate its relevance.
GA 2	Critically evaluate, analyse, and comprehend a scientific problem. Think creatively, experiment and generate a solution independently, check and validate it and modify if necessary.
GA 3	Access, evaluate, understand, and compare digital information from various sources and apply it for scientific knowledge acquisition as well as scientific data analysis and presentation.
GA 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and draw relevant inferences. Communicate the research work in appropriate scientific language.
GA 5	Demonstrate initiative, competence, and tenacity at the workplace. Successfully plan and execute tasks independently as well as with team members. Effectively communicate and present complex information accurately and appropriately to different groups.
GA 6	Use an objective, unbiased and non-manipulative approach in collection and interpretation of scientific data and avoid plagiarism and violation of Intellectual Property Rights. Appreciate and be sensitive to environmental and sustainability issues and understand its scientific significance and global relevance.
GA 7	Translate academic research into innovation and creatively design scientific solutions to problems. Exemplify project plans, use management skills, and lead a team for planning and execution of a task.
GA 8	Understand cross disciplinary relevance of scientific developments and relearn and reskill so as to adapt to technological advancements.

PROGRAM OUTCOMES

PO	Description
	A student completing Master's Degree in Science program in the subject of Biochemistry will be able to:
PO 1	Acquire necessary knowledge and skills to undertake a career in research,
	either in industry or in an academic set up.
PO 2	Compare and contrast the breadth and depth of scientific knowledge in the broad range of fields including Protein biochemistry, Bioenergetics, Diagnostic Biochemistry, Hormonal Biochemistry, Molecular Biology, Nutritional Biochemistry, and Nanotechnology.
PO 3	Extrapolate and comprehend the regulatory role of metabolic processes and understand the underlying cause of metabolic disorders
PO 4	Acquire thorough knowledge of Biochemical Techniques, Advanced Immunology, Physiology, Genetic Engineering, and Biotechnology
PO 5	Describe and express the biochemical basis of human diseases, protein structure and conformation, non-invasive diagnostics, clinical research, and its importance in drug development. Usage of this knowledge further for multitude of laboratory applications.
PO 6	Integrate and apply the techniques in Biophysics, Analytical Biochemistry Clinical biochemistry, Microbiology, Molecular Biology and Basics ir Bioinformatics
PO 7	Gain proficiency in laboratory techniques in both Biochemistry and Molecular Biology, and be able to apply the scientific method to the processes of experimentation and Hypothesis testing
PO 8	Develop and enhance skills & improve employability through academic, research and internship opportunities
PO 9	Gain exposure to basic research through the provision of PG research based project.
PO 10	Learn to work as a team as well as independently to compile and interpret Biological data, carry out Research investigations and draw

CREDIT STRUCTURE MSc I

	Semester	Mandatory	Elective	RM	OJT/FP	RP/ Internship	Cum.Credits
	4	14 (2 · 4)*2 · 2	4(2+4)		0	0	
	1	14 (3+1)*3+2	4(3+1)	4	0		22
	2	14 (3+1)*3+2	4(3+1)	0	4 FP	0 6	22
						055	
					.0		
				. (R		
				S			
			2011				
		A					
		RA					
		K					
<	$2A^{n}$						

Semester I

Course Code: RPSBCH.0501

Course Title: Haematology

Type of course: Discipline Specific Core Course I

Academic year 2023-24

COURSE OUTCOMES:

	Academic year 2023-24	
URSE OUTCOMES:		
COURSE	DESCRIPTION	
OUTCOME	A student completing this course will be able to:	
CO 1	Outline the basics of circulatory system including Iron Metabolism,	
	haematopoiesis, and Erythropoiesis	
CO 2	Compare and state differences in hemochromatosis and anaemia	
	from the perspective of iron homeostasis	
CO 3	Examine the composition of normal hemoglobin at various stages	
	of development	
CO 4	Evaluate the structural difference between different types of	
	hemoglobin, compare O2 binding properties of hemoglobin,	
	including haeme- haeme interactions	
CO 5	Elaborate on the mechanism of blood coagulation and	
	anticoagulants	
CO 6	Conclude pathophysiology of certain disorders related to blood and	
	haemoglobin	
CO 7	Discuss the importance of blood gas analysis in haematology and	
	related disorders	
CO 8	Make use of theoretical concepts of Haematology and develop	
	experimental acumen.	

Course	Unit	Course/ Unit Title	Credits/
Code		Haematology	Hours
		RPSBCH.O501	3 / 45 Hours
	1	Haematopoiesis & Ferrokinetics	15
	1.1	Introduction to Haematopoiesis	
	1.2	Erythropoiesis - Stages of development of	
		erythrocytes, Precursors of RBCs, Factors	
•		influencing erythropoiesis, Role of erythropoietin	
	1.3	Leucopoiesis, Leucocytosis and factors	
		responsible, Leukopenia	
	1.4	Thrombopoiesis, Thrombocytopenia	

	1.5.1	Iron metabolism- Absorption, Transport,	
		distribution, Storage & excretion	
	1.5.2	Role of apoferritin & Transferin	
	2	Haeme Catabolism & Blood Coagulation	15
	2.1	Haemoglobin (Hb)-Features, varieties, combination	
		of Hb with gases, Haeme-haeme interactions	
	2.2	Biosynthesis of Haemoglobin (with structures)	
	2.2.1	Biochemical pathway for Porphyrin synthesis,	
		formation of Haeme	
	2.3	Haeme catabolism	
	2.4	Haemostasis, Molecular mechanism of blood	
		coagulation, role of vitamin K in coagulation,	
		fibrinolysis and anticoagulant	
	3	Blood disorders	15
	3.1	Haemophilia and its types, Thrombosis	
	2.2	Haomochromatosis, Sidorosis	
	3.Z		
	3.2	Haemoglobinopathies	
	3.2 3.3 3.3.1	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell	
	3.2 3.3 3.3.1	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha	
111	3.3 3.3.1	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta	
111	3.2 3.3 3.3.1 3.3.2	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta Anemias: Definition and types (Hemolytic,	
III	3.3 3.3.1 3.3.2	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta Anemias: Definition and types (Hemolytic, hemorrhagic, megaloblast, pernicious, iron	
111	3.3 3.3.1 3.3.2	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta Anemias: Definition and types (Hemolytic, hemorrhagic, megaloblast, pernicious, iron deficiency and aplastic anemia), polycythemia	
111	3.2 3.3 3.3.1 3.3.2 3.4	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta Anemias: Definition and types (Hemolytic, hemorrhagic, megaloblast, pernicious, iron deficiency and aplastic anemia), polycythemia Cyanosis & its types	
111	3.3 3.3.1 3.3.2 3.3.2 3.4 3.5	Haemoglobinopathies Genetics basis of haemoglobinopathies - Sickle cell anemia, Thalassemia – alpha (Subtypes of alpha thalassemia) & beta Anemias: Definition and types (Hemolytic, hemorrhagic, megaloblast, pernicious, iron deficiency and aplastic anemia), polycythemia Cyanosis & its types Respiratory Acidosis & Alkalosis	

PRACTICAL

Γ		Course code- RPSBCHP.0501	1 Credit
		Practical Title- Practicals based on RPSBCH.0501	
	1)	Estimation of RBC count by Haemocytometer	
	2)	Examination of Blood Film	
	3)	Estimation of iron by dipyridyl method	
	4)	Bleeding time	
	5)	Clotting time	
	6)	Erythrocyte Sedimentation Rate	
	7)	Packed Cell Volume	
	8)	Estimation of Haemoglobin	

References:

 Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York), ISBN: 978-0-4710-28173-4.

- 2. Introduction to Human Physiology (2013) 8th edition; Lauralee Sherwood. Brooks/Cole, Cengage Learning.
- 3. The World of the cell, 7th edition (2009)
- 4. Genetics (2012) Snustad and Simmons
- Urinalysis and Body Fluids by Susan King Strasinger & Marjorie Schaub Di Lorenzo, 6th Edition
- Graff's Textbook of Urinalysis and Body Fluids Lillian A. Mundt & Kristy Shanahan, 2nd Edition
- 7. Fundamentals of the study of urine and body fluids Nancy A. Brunzel, 3rd Edition, Elsevier
- 8. A Textbook of Medical Biochemistry MN Chatterjea & Rana Shinde, 8th Edition, Jaypee Publication
- 9. Clinical Biochemistry Metabolic and Clinical Aspects by William J. Marshall, Márta Lapsley, Andrew Day, Ruth Ayling
- 10. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. REALIZATION ON ALLONDON ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA Principles of Biochemistry by G. Zubay, W. Parson, D.

Course Code: RPSBCH.0502

Course Title: Vitamins & Minerals

Type of course: Discipline Specific Core Course II

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Outline the concepts of vitamins, their classification and
	biochemical role
CO 2	Select biochemical techniques relevant in nutritional biochemical
	research
CO 3	Conclude the biochemical activity in the human body of vitamins
	and minerals
CO 4	Discuss the nutritional requirements and significance of dietary
	minerals like macroelements and microelements
CO 5	Elaborate on the simple concepts related to metabolism, metabolic
	roles played by vitamins and minerals, appreciate the correlation
	between energy molecules, reducing equivalents and their role in
	metabolic pathways.
CO 6	Justify the importance of enzymes and coenzymes in
	pathophysiology of diseases.
CO 7	Explain the functions of macronutrients & micronutrients
CO 8	Make use of theoretical concepts of vitamins and minerals and
	develop experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code		Vitamins & Minerals	Hours
		RPSBCH.0502	3 / 45 Hours
	1	Vitamins	15
	1.1	Introduction and classification	
24	1.2	Fat soluble vitamins- A,D,E,K (Chemistry of the	
		vitamin & Biochemical role	
1	1.2.1	Vitamin A – Chemistry, Wald's Visual cycle and	
•		role of Rhodopsin (with structure), Transducin,	
		cGMP in vision; Deficiency disorders (Night	
		Blindness, Xerosis Conjunctiva, Xerosis Cornea,	
		Bitot's Spots, Keratomalacia, Follicullar	
		Hyperkeratosis)	

	1.2.2	Vitamin D – role in Ca absorption and	
		mobilization, Deficiency disorders (Rickets,	
		Osteomalacia);	
		Vit E and Vit K– physiological role (Vitamins D, E,	
		K no structures)	
	1.3	Water soluble vitamins	
	1.3.1	Vitamin B complex (Chemistry of the vitamin & its	
		coenzyme form, Biochemical role–Thiamin,	$\mathcal{C}^{\mathcal{N}}$
		Riboflavin, Niacin, Pyridoxine, Biotin, Lipoic acid:-	
		Chemistry of the Vitamin and its coenzyme form	
		[structure not to be done, only group involved in its	
		activity]	
	1.3.2	Vitamin C	
	2	Macroelements	15
	2.1	Biochemistry of macroelements	
	2.2	Sources, Recommended daily allowances,	
		Absorption, transport, excretion, Biochemical	
		significance & Disorders related to:	
н	2.2.1	Calcium	
	2.2.2	Phosphorous	
	2.2.3	Magnesium	
	2.2.4	Sodium	
	2.2.5	Potassium	
	2.2.6	Chlorine	
	2.2.7	Sulphur	
	3	Microelements	15
	3.1	Biochemistry of microelements	
	3.2	Sources, Recommended daily allowances,	
		Biochemical significance & Disorders related to:	
	3.2.1	Copper	
	3.2.2	lodine	
7, ""	3.2.3	Manganese	
	3.2.4	Zinc	
	3.2.5	Molybdenum	
	3.2.6	Cobalt	
25	3.2.7	Fluorine	
	3.2.8	Selenium	

PRACTICAL

	Course code- RPSBCHP.0502	1 Credit
	Practical Title- Practicals based on RPSBCH.0502	
1)	Estimation of vitamin C by dichlorophenol dye method	
2)	Estimation of vitamin C iodometrically	
3)	Estimation of Magnesium by EDTA method	
4)	Estimation of Sodium by Flamephotometer	
5)	Estimation of Potassium by Flamephotometer	
6)	Estimation of Iron by Wong's method	
7)	Estimation of Copper by the Isoamyl alcohol method	

References:

- 1. Textbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley & Sons, Inc. (New York)
- 2. Human nutrition and dietetics by Davidson, S. etal.; Churchill Livingstone Publishers.
- 3. Nutrition and dietetics by Joshi, Shubhangini A.; Tata McGraw and Hill publishers
- 4. Nutrition Science by Srilakshmi, B.; New Age International publishers
- 5. Krause's Food and Nutrition Care process.(2012); Mahan, L.K Strings, S.E, Raymond, J. Elsevier's Publications.
- 6. The vitamins, Fundamental aspects in Nutrition and Health (2008); G.F. Coombs Jr. Elsevier's Publications..
- 7. Principles of Nutritional Assessment (2005) Rosalind Gibson. Oxford University Press.
- 8. Nutritional Biochemistry: Tom Brody.

AMMARA

- 9. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 10. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 11. Introduction to Human nutrition, second edition, Edited on behalf of The Nutrition Society by Michael J Gibney, Susan A Lanham-New, Aedin Cassidy, Hester H Vorster Wiley Blackwell Publications

Course Title: Ecology & Molecular Evolution

Type of course: Discipline Specific Core Course III

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Recall different concepts in population studies and ecology
CO 2	Determine variety of ways that organisms interact with both the
	physical and biological activity
CO 3	Justify the role of organisms that shape the distribution and
	abundance of organism from the micro-habitat to the globe
CO 4	Predict distribution of organisms is a product of positive and
	negative interactions within and across trophic level, including
	competition, mutualism, predation and parasitism
CO 5	Discuss the impact of ecological processes across all scales are
	affected by human activities, and apply basic ecological principles
	to meet societal resource management and conservation goals
CO 6	Conclude different evolutionary processes that shape biodiversity.
CO 7	Assess evolutionary principles to a variety of practical questions
	ranging from conservation genetics to genome evolution
CO 8	Make use of theoretical concepts of Ecology & Molecular Evolution
	and develop experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code		Ecology & Molecular Evolution	Hours
		RPSBCH.0503	3 / 45
Nº.			Hours
	1	Ecological Principles	15
	1.1	The Environment	
	1.1.1	Physical environment; biotic environment; biotic	
I		and abiotic interactions	
•	1.2	Habitat and Niche	
		Concept of habitat and niche; niche width and	
		overlap; fundamental and realized niche; resource	
		partitioning; character displacement	

	1.3	Ecological Succession	
	1.3.1	Types; mechanisms; changes involved in	
		succession; concept of climax.	
	1.4	Biogeography: Major terrestrial biomes; theory of	
		island biogeography;	
		biogeographical zones of India.	
	1.5	Ecosystem Ecology: Ecosystem structure;	
		ecosystem function; energy flow and	
		mineral cycling (C,N,P); primary production and	
		decomposition; structure and function	
		of some Indian ecosystems: terrestrial (forest,	
		grassland) and aquatic (fresh water,	
		marine, eustarine)	\mathbf{O}
	2	Population Ecology & Species Interaction	15
	2.1	Population Ecology	
	2.1.1	Characteristics of a population; population growth	
		curves; population regulation; life history	
		strategies (r and K selection); concept of	
II		metapopulation – demes and dispersal, interdemic	
		extinctions, age structured populations	
	2.2	Species Interactions	
	2.2.1	Types of interactions, interspecific competition,	
		herbivory, carnivory, pollination, symbiosis	
	2.3	Community Ecology	
	2.3.1	Nature of communities; community structure and	
		attributes; levels of species diversity and its	
		measurement; edges and ecotones	
	3	Molecular Evolution and mechanism	15
	3.1	Concepts of neutral evolution	
	3.2	Molecular divergence and molecular clocks	
	3.3	Molecular tools in phylogeny, classification and	
		identification; Protein and nucleotide sequence	
		analysis; origin of new genes and proteins; Gene	
\sim		duplication and divergence	
	3.4	The mechanisms	
	3.4.1	Population genetics – Populations, Gene pool.	
25		Gene frequency: Hardy-Weinberg Law	
	3.4.2	Concepts and rate of change in gene frequency	
	0	through natural selection, migration and random	
		genetic drift. Adaptive radiation	
	3.4.3	Isolating mechanisms: Speciation: Allopatricity	
	0.1.0	and Sympatricity: Convergent evolution: Sexual	
		selection: Co-evolution	

PRACTICAL

Course code- RPSBCHP.0503	1 Credit
Practical Title- Practicals based on RPSBCH.0503	
Study of Gause principle using Paramecium species (K-	
strategies) as study model	
Study of logistic vs exponential growth curve	
Problems on population ecology	
Graphical study of Lotka Voltera competition equation	
Problems on Hardy-Weinberg Law	
Case studies on Ecology	
	Course code- RPSBCHP.O503 Practical Title- Practicals based on RPSBCH.O503 Study of Gause principle using <i>Paramecium</i> species (K- strategies) as study model Study of logistic vs exponential growth curve Problems on population ecology Graphical study of Lotka Voltera competition equation Problems on Hardy-Weinberg Law Case studies on Ecology

- 1) Fundamentals of Ecology, Eugene Odum, Saunders Publication, 3rd Edition
- 2) Ecology: Principles & Applications, J. L. Chapman, M. J. Reiss, Cambridge University Press
- 3) Ecology and Environment, P. D. Sharma, Rastogi Publications, 2011
- 4) Elements of Ecology, Thomas Smith, Robert Smith, Pearson Education
- 5) Concept of Ecology, N. Arumugam, Saras Publications
- 6) Verma, P.S. and Agarwal, V.K. Concept of ecology (Environmental Biology), S.Chand & Co. Ltd., New Delhi 2004.

, Gh

Course Code : RPSBCH.0504

Course Title: Instrumentation I

Type of course: Discipline Specific Core Course IV

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION	
OUTCOME	A student completing this course will be able to:	
CO 1	Discuss major spectrophotometric and chromatographic	
	instruments commonly used in biochemical analysis.	
CO 2	Summarize different methods of performing biochemical analysis of various organic and inorganic compounds.	
CO 3	Analyse principle, instrumentation and working of	
	spectrophotometric and chromatographic analytical instruments	
CO 4	Evaluate the quality and quantity of different samples using	
	different analytical techniques mentioned in the content of this course	
CO 5	Develop critical thinking for interpreting analytical data.	
CO 6	Identify appropriate instruments as per the measurement need.	
CO 7	Justify the importance of spectrophotometric and chromatographic techniques in biochemical analysis	
CO 8	Make use of theoretical concepts of spectrophotometric and	
	chromatographic techniques and develop experimental acumen.	
MAR	DETAILED SYLLABUS	

Course	Unit	Course/ Unit Title	Credits/
Code	Instrumentation I		Hours
		RPSBCH.0504	2 / 30 Hours
	1	Spectrophotometric techniques based on	15
		molecular structure and interactions	
•	1.1	Introduction to spectroscopic techniques for	
		Structural analysis	

	4.0		
	1.2	applications of	
1.2.1		Infrared and Raman spectroscopy	
	1.2.2	Surface plasmon resonance	
	1.2.3	Electron paramagnetic resonance	
	1.2.4	Nuclear magnetic resonance	
	1.2.5	X-ray diffraction	
	1.2.6	Small-angle scattering	
	2	Chromatography	15
		0 1 5	
	2.1	Introduction, Types of Chromatography	
	2.1 2.2	Introduction, Types of Chromatography Gas chromatography, Principle, Working,	
	2.1 2.2	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP)	3
	2.1 2.2 2.3	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography-	<u> </u>
II	2.1 2.2 2.3	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI,	3
H	2.1 2.2 2.3	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity, fluorescence)	5
II	2.1 2.2 2.3 2.4	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity, fluorescence) Introduction to Hyphenation GC-MS and LC-MS	
II	2.1 2.2 2.3 2.4 2.5	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity, fluorescence) Introduction to Hyphenation GC-MS and LC-MS MALDI & MALDI-TOF	<u> </u>
II	2.1 2.2 2.3 2.4 2.5 2.6	Introduction, Types of Chromatography Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP) High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity, fluorescence) Introduction to Hyphenation GC-MS and LC-MS MALDI & MALDI-TOF Sample Preparation and Biochemical Applications	5

- Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Principles of Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Medical Biochemistry by Ramakrishnan (2012)
- 8. TextBook of Medical Physiology Guyton Prism Books Pvt. Ltd. Bangalore

Modality of Assessment: Semester I

DSC I, II and III

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of Two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 4	15	UNIT I
Q2.	Any 3 out of 4	15	UNIT II
Q3.	Any 3 out of 4	15	UNIT III
	TOTAL	45	

DSC IV

Semester End Theory Examination:

- 1. Duration These examinations shall be of Two hours & 30 Minutes duration.
- 2. Theory question paper pattern:

Paper Pattern:

-	Question	Options	Marks	Questions Based on
へ	Q1.	Any 3 out of 4	18	UNIT I
*	Q2.	Any 3 out of 4	18	UNIT II
	Q3.	Any 2 out of 4	14	UNIT I & II
		TOTAL	50	

DSC I, II and III

Semester End Practical Examination:

Practical Examination Pattern:

		Particulars	Marks
	1	Laboratory work	20
	2	Viva & Journal	05
		TOTAL	25
			COV
		C	
	N		
25			

Semester II

Course Code : RPSBCH.E511

Course Title: Human Physiology

Type of course: Discipline Specific Core Course I

Academic year 2023-24

COURSE OUTCOMES:

	Academic year 2023-24		
	IES:		
	DESCRIPTION		
	A student completing this course will be able to:		
CO 1	Analyse the organization and processes of the muscular system and describe its location, function & physiology of muscle contraction		
CO 2	Summarize the distinguishing features and types of muscle & identify the role of the muscular system in homeostasis of the human body		
CO 3	Explain the major functions, composition and physiology of bone		
CO 4	Conclude the importance of physiological systems such as cardiac and reproductive and its related disorders.		
CO 5	Illustrate structure, layer, chamber and valves of the human cardiac system		
CO 6	Justify cellular and molecular mechanisms in neurons to comprehend established information about neurophysiology		
CO 7	Interpret the effects of neurotransmitters		
CO 8	Make use of theoretical concepts of Human physiology and develop experimental acumen.		

Course	Unit	Course/ Unit Title	Credits/
Code		Human Physiology	Hours
7.		RPSBCH.E511	3 / 45
6			Hours
	1	Musculoskeletal System	15
	1.1	Bone physiology	
	1.1.1	Function and Composition of bone	
	1.1.2	Structural considerations-structure of bone; cells	
I I		of bone	
	1.1.3	Physiological considerations- Bone growth, Bone	
		formation, bone resorption; Bone remodelling	
	1.1.4	Metabolic Bone diseases- Rickets, Osteomalacia;	
		Osteoporosis	

			1
	1.2	Muscle Physiology	
	1.2.1	Types of muscle cells- Skeletal, Cardiac; Smooth	
		muscle (Structure; Comparison)	
	1.2.2	Structure of skeletal muscle, Muscle proteins-	
		Structural proteins (Actin; Myosin) & Cross-linking	
		proteins (Tropomyosin; Troponin)	
	1.2.3	Molecular theory of muscle contraction	
	2	Cardiac Physiology and related disorders	15
	2.1.1	Structure of the heart	
	2.1.2	Layers of the heart wall	
	2.1.3	Chambers and valves of the heart	
	2.2	Physiology of the cardiac muscle	
	2.3	Conducting system of heart, comparative rates of	
		conduction system of heart	
	2.4	Heart sound, heart rate and factors influencing	
		heart rate	
	2.5	Cardiac cycle and effect of heart rate on cardiac	
		cycle	
	2.6	Cardiac output	
	2.7	Hypertension, congestive heart disease,	
		myocardial infarction, cardiac arrhythmias	
	3	Neurophysiology	15
	3.1.1	Nervous system - Overview, Classification	
	3.1.2	Neuron – Structure, classification based on	
		structure and function	
	3.1.3	Glial cells, formation of myelin sheath	
	3.1.4	Concept of myelinated and unmyelinated neuron	
	3.2.1	Resting membrane potential of a neuron	
	3.2.2	Processes – Depolarization, repolarization,	
		hyperpolarization	
111	3.3	Generation of nerve impulse	
1	3.4	Saltatory conduction of impulse, All-or-none	
		principle	
	3.5.1	Neuromuscular junction	
1.	3.5.2	Action of Acetylcholine at chemical synapse	
	3.5.3	Removal of acetylcholine after its action and	
		regeneration	
	3.6	Excitatory and inhibitory neurotransmitter pair in	
		brain and spinal cord	
	3.7	Catecholamines as neurotransmitter	

	Course code- RPSBCHP.E511	1 Credit
	Practical Title- Practicals based on RPSBCH. E511	
1)	Estimation of Calcium by EDTA method	
2)	Estimation of phosphorus by Fiske Subarrow method	
3)	Estimation of Glycine by Sorensen's method	
4)	Study of Electrocardiograms in healthy & diseased states	. Co
5)	Virtual Labs – Patch Clamp Techniques	
6)	Field visit & report writing	

- 1. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T., McGraw Hill International Publications (New York), ISBN: 978-0-07-128366-3.
- 2. Harper's Biochemistry (2012) 29th ed., Murray, R.K., Granner, D.K., Mayes and P.A., Rodwell, V.W., Lange Medical Books/McGraw Hill. ISBN:978-0-07-176-576-3.
- 3. Textbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed Elseviers India Pvt. Ltd. (New Delhi). ISBN: 978-1-4160-4574-8.
- 4. Fundamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J.L., Pearson Publications (San Francisco), ISBN: 10:0-321-53910-9 / ISBN: 13: 978-0321-53910-6.

AMMARAMARY

Å.

Course Title: Genetic Engineering & RDT

Type of course: Discipline Specific Core Course II

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Illustrate creative use of modern tools and techniques for manipulation
	and analysis of genomic sequences.
CO 2	Explain application of recombinant DNA technology in biotechnological
	research.
CO 3	Elaborate the fundamental steps of genetic engineering and describe
	thee versatile tools and techniques employed in genetic engineering.
CO 4	Discuss the techniques used to probe DNA for specific gene of interest.
CO 5	Explain the methodology of PCR and its applications.
CO 6	Analyse the tools and techniques for construction of recombinant DNA,
	cloning vectors & genomic and cDNA library
CO 7	Justify the use of rDNA technology from academic and industrial
	perspective.
CO 8	Make use of theoretical concepts of genetic engineering and RDT and
	develop experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code	as	Genetic Engineering & RDT	Hours
7,		RPSBCH.E512	3 / 45 Hours
	1	Introduction to RDT & cloning vectors	15
	1.1	Overview of RDT, Extraction and purification of	
		plasmid and bacteriophage DNA	
2		Restriction and modification systems, restriction	
		endonucleases, Concept of sticky ends, blunt ends	
I	1.2	Other enzymes used in manipulating DNA	
		molecules:	
		Terminal transferases, linkers and adapters,	
		homopolymer tailing	
	1.3	Reverse transcriptase	
	1.3.1	DNA ligase, Ligation of DNA molecules	

	1.3.2	Synthetic oligonucleotides - synthesis and use	
	1.3.3	Plasmids and bacteriophages as vectors for gene	
	1 /	Cloning Cloning vectors based on E, coli plasmids	
	1.4	pBR322 pUC8 pGEM37	
	1.5	Cloning vectors based on M13 and λ	
		bacteriophage, and in vitro packaging Vectors for	
		veast Ti-plasmid and retroviral vectors high	
		capacity vectors	C N
	1.5.1	BAC and YAC	
	1.6	cDNA and Genomic libraries, identification of a	
		clone from gene library, colony and plague	
		hybridization probing. Southern and Northern	
		hybridization	
	1.7	Methods based on detection of the translation	
		product of the cloned gene	
	2	Expression of cloned genes, PCR & DNA	15
		sequencing	
	2.1.1	Vectors for expression of foreign genes in E. coli,	
		cassettes and gene fusions	
	2.1.2	Challenges in producing recombinant protein in E.	
		coli	
	2.2	Production of recombinant protein by eukaryotic	
		cells	
11	2.2.1	Fusion tags such as, poly-histidine, glutathione,	
		maltose binding protein and their role in purification	
	2.2.1	of recombinant proteins	
	2.2.1	Fundamentals of polymerase chain reaction	
	2.2.2	transcriptoco PCR and Nosted PCR, quantitativo	
		PCR Primer designing for PCR Cloning PCR	
		products	
	2.3	DNA sequencing by Sanger's method. Automated	
		Sanger's DNA sequencing. Pvrosequencing	
	3	Application of genetic engineering in	15
		Biotechnology	
	3.1	Site-directed mutagenesis (original method,	
		Kunkel's method, cassette mutagenesis, PCR	
•		oligonucleotide mutagenesis), Protein engineering	
111		(T4-lysozyme), yeast two hybrid systems	
	3.2	Production of recombinant pharmaceuticals such	
		as insulin, human growth hormone (original,	
		receptor fragment-hormone coupled, albutropin),	
		factor VIII.	

3.3	Recombinant vaccines	
3.4	Gene therapy & its application; CRISPR-Cas 9	
	system	
3.5	Applications in agriculture – Bt cotton, problems	
	with genetically modified plants, glyphosate	
	herbicide resistant crops, ethical & safety concerns	
3.6	RDT in diagnosis and treatment of diseases	
3.7	Model organisms: Escherichia coli,	
	Saccharomyces cerevisiae, Drosophila	
	melanogaster, Caenorhabditis elegans, Danio rerio	
	and Arabidopsis thaliana	

	Course code- RPSBCHP.E512 1 Credit
	Practical Title- Practicals based on RPSBCH. E512
1	Isolation of chromosomal DNA from E coli cells
2	Isolation of plasmid DNA from E. coli cells
3	Separation of chromosomal & plasmid DNA using agarose gel
	electrophoresis
4	Designing of primers
5	Digestion of plasmid DNA with restriction enzymes
6	Preparation of competent cells (CaCl2 treatment)
7	Transformation of E. coli cells with plasmid DNA
8	Demonstration of complementation of β-galactosidase for
	Blue and White selection

- 1. Gene Cloning and DNA Analysis (2010) 6th ed., Brown, T.A., Wiley-Blackwell publishing (Oxford, UK), ISBN: 978-1-4051-8173-0.
- 2. Principles of Gene Manipulation and Genomics (2006) 7th ed., Primrose, S.B., and Twyman, R. M., Blackwell publishing (Oxford, UK) ISBN:13: 978-1-4051-3544-3.
- Molecular Biotechnology: Principles and Applications of Recombinant DNA (2010) 4th ed., Glick B.R., Pasternak, J.J. and Patten, C.L., ASM Press (Washington DC), ISBN: 978-1-55581-498-4 (HC).
- 4. Genetic engineering and its applications, P. Joshi, Botania Publishers and Distributors
- 5. Recombinant DNA: A short course, Watson etal, Scientific Americal Books
- 6. Biotechnology Fundamentals and Applications, S.S.Purohitt, Agrobios Publishers, 2001.
- 7. Molecular Biology of the Gene: Watson, Baker, Bell, Gann, Levine, Losick; Pearson Benjamin Cummings & CSHL Press
- 8. Gene cloning & DNA analysis: an introduction; seventh edition; T A Brown; Wiley Blackwell publications

, Gr

Course Code : RPSBCH.E513

Course Title: Applied Biochemistry

Type of course: Discipline Specific Core Course III

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Summarize about large scale production and purification of various industrially important products
CO 2	Illustrate the manufacturing processes for Industrial Importance of Carbohydrates, Proteins & Lipids
CO 3	Conclude different types and applications of biosensors in the field of biology.
CO 4	Discuss production of different types of vaccines
CO 5	Adapt fermentation process, inoculum development and fermentation media
CO 6	Develop designing and working of various fermenters and bioprocess parameters from market point of view
CO 7	Formulate recovery operations together with the fundamental principles for basic methods in production technique for bio-based products.
CO 8	Make use of theoretical concepts of applied biochemistry to develop experimental acumen.

Course	Unit	Course/ Unit Title	Credits/
Code		Applied Biochemistry	Hours
		RPSBCH.E513	3 / 45
			Hours
C.	1	Industrial Importance of Carbohydrates,	15
~		Proteins & Lipids	
I	1.1	Carbohydrates of industrial importance	
	1.1.1	Manufacturing and refining of cane sugar, pectin &	
		cellulose	

	1.1.2	Manufacturing of polysaccharides-Plant	
		polysaccharide (Gum Arabic), microbial	
		polysaccharides- modified starches & celluloses	
	1.2	Lipids of industrial importance	
	1.2.1	Extraction and refining of vegetable oils and	
		animal fats & essential oils	
	1.2.2	Extraction and applications of chlorophyll,	
		carotene, lycopene Turmeric	
	1.3	Proteins of industrial importance	
	1.3.1	Hormones – conventional & engineered-Insulin,	
		Erythropoietin, Growth hormones	
	1.3.2	Non – catalytic industrial proteins – casein, whey	
		proteins, Egg proteins, wheat germ proteins.	
	2	Biosensors & Vaccine Technology	15
	2.1	Biosensors	
	2.1.1	Beneficial features of biosensors	
	2.1.2	Basic components of biosensor	
	2.2	Types: Electrochemical, Thermometric, Optical,	
		Piezoelectric, Whole cell, Immunobiosensor	
		(Construction and development)	
		Types of biosensors, their construction, working	
		and application in various industries and medicine	
	2.2.1	Calorimetric biosensor – Enzyme based sensors	
		(Importance in clinical diagnosis)	
	2.2.2	Potentiometric biosensor- Ion selective electrode	
		(Importance in environmental monitoring)	
	2.2.3	Amperometric biosensor- (Glucose monitoring)	
п		Optical biosensor- Chromogenic reaction	
	2.2.4	Piezo-electric biosensor –Crystal study	
	2.2.5	Immunosensor - ELISA	
	2.3	Production of vaccine	
~	2.3.1	Vaccine derived from whole organism Attenuated	
		& Inactivated vaccine	
\sim	2.3.2	Vaccine derived from macromolecules purified	
N.		from pathogenic organism – Use of Bacterial	
		polysaccharide, Toxoid, Proteins, Synthetic	
		peptide for vaccine development	
	2.3.3	Recombinant vector vaccine	
	2.3.4	Multivalent subunit vaccine- (SMAA complex &	
		ISCOM)	
	2.3.5	DNA vaccine (Production & applications)	
	2.3.6	Anti-Idiotype vaccine (Use of hybridoma	
		technology)	

	3	Bioprocess technology	15
	3.1	Upstream processing:	
	3.1.1	Strains and Strain Improvement of industrial	
		microorganisms	
	3.1.2	Isolation of industrially important microorganisms	
	3.1.3	Improvement of industrial microorganisms	
		a) Selection of induced mutants for primary	
		metabolite	
		b) Isolation of induced mutants for secondary	
		metabolites	
	3.1.4	Sterilization	
		i) Introduction ii) Media sterilization	
	3.1.5	Design and methods of batch sterilization	
	3.1.6	Design and methods of continuous sterilization	
III	3.2	Downstream processing	
	3.2.1	Recovery & Purification of fermentation products:	
		i. Introduction, Precipitation, Filtration - theory,	
		filter-aids, batch filters (Plate and frame filters),	
		Contrinuous filters (Rotary Vacuum),	
		centrifuges - Basket tubular bowl	
		ii Cell disruption: Physico-chemical	
		iii Liquid – Liquid extraction Solvent recovery	
		iv. Chromatography. Ultrafiltration. reverse	
		osmosis, liquid membranes, drying,	
		crystallization, Whole broth processing.	
	3.3	Environmental aspects	
	3.3.1	Effluent treatment and regulations for fermentation	
		industry	
	3.3.2	Modern methods of effluent treatment	

-

- 1) L.E.Casida, Industrial Microbiology, New Age International publishers
- 2) Biosensors: Fundamentals and Applications, Bansi Dhar Malhotra and Chandra Mouli Pandey (Smithers Rapra)
- 3) Handbook of Good Laboratory Practices (GLP), Second Edition World Health Organization
- Quality Assurance A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes, Jamie Bartram and Gareth Rees, World Health Organization
- 5) M. Pelczar, E.C.S. Chan and M.R. Krieg, MICROBIOLOGY, McGraw Hill Inc., Singapore (1997).
- 6) Industrial Fermentation by Paul Allen
- 7) Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 8) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International u and a second s

, Ch

Course Code: RPSBCH.E514

Course Title: Instrumentation II

Type of course: Discipline Specific Core Course IV

Academic year 2023-24

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Choose appropriate advanced instrument as per the measurement need in biochemical analysis.		
CO 2	Illustrate basic principle and working of advanced instruments as mentioned in the course		
CO 3	Estimate different disease conditions using advanced medical Instruments		
CO 4	Explain the basic features of advanced instruments used in medicine		
CO 5	Analyze the performance characteristics of each advanced instruments as mentioned in the course		
CO 6	Interpret the data obtained after the analysis of different samples		
CO 7	Develop interest in analysis of biomolecules and this will help them in undertaking further research in the area of biochemistry in any research/industrial institution.		
CO 8	Apply the complete knowledge of various electronics instruments/transducers to measure the physical quantities in the field of science, engineering and technology		

		control, origine or ing and toor not ogy	
	AP	DETAILED SYLLABUS	
Course	Unit	Course/ Unit Title	Credits/
Code		Instrumentation II	Hours
		RPSBCH.E514	2 / 30 Hours
	1	Special Instrumental Methods of Analysis	15
	1.1	Basic Principles, Instrumentation, working and	
I		applications of -	
	1.1.1	FRAP, FRET, FLIM	
	1.1.2	Conductometry	

	1.1.3	Potentiometry	
	1.1.4	Selective Ion Meters	
	1.1.5	High Frequency Titrations	
	1.1.6	Polarography	
	1.1.7	Anode Stripping Voltammetry	
	1.1.8	Neutron Activation Analysis	
	2	Instruments used in medicine	15
	2.1	Principle and working of	
		Dialyser, Nebulizer, Otoscope, Bone Densitometry	A O
		Single neuron recording, patch-clamp recording	
	2.2	ECG, Defibrillator	
11	2.3	Brain activity recording, lesion & stimulation of brain - PET, MRI, fMRI, CAT	D'
	2.4	Medical imaging –	
	2.4.1	Ultrasound (medical ultrasonography),	
		Elastography, Tactile imaging	
	2.4.2	Echocardiography (Heart Ultrasound)	

- Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Principles of Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- 6. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Medical Biochemistry by Ramakrishnan (2012)
- 8. TextBook of Medical Physiology Guyton Prism Books Pvt. Ltd. Bangalore

DSC I, II and III

A) Internal Assessment- 40%- 30 Marks

Evaluation type	Marks
Class test	20
Class test/ Project/ Assignment/ Presentation	10
TOTAL	30
	Evaluation type Class test Class test/ Project/ Assignment/ Presentation TOTAL

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of Two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 4	15	UNIT I
Q2.	Any 3 out of 4	15	UNIT II
Q3.	Any 3 out of 4	15	UNIT III
	TOTAL	45	

DSC IV

Semester End Theory Examination:

- 1. Duration These examinations shall be of Two hours & 30 Minutes duration.
- 2. Theory question paper pattern:

Paper Pattern:

~	Question	Options	Marks	Questions Based on
い	Q1.	Any 3 out of 4	18	UNIT I
Ť	Q2.	Any 3 out of 4	18	UNIT II
	Q3.	Any 2 out of 3	14	UNIT I & II
		TOTAL	50	

Semester End Practical Examination:

Practical Examination Pattern:

		Particulars	Marks
	1	Laboratory work	20
	2	Viva & Journal	05
		TOTAL	25
			6
			5
		6	
	10		
Y			