Resolution No. AC/II(20-21).2.RPS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: MSc Part I

Program Code: RPSBCH

(Credit Based Semester and Grading System for academic year 2020–2021)

PROGRAM OUTCOMES

PO	PO Description
	A student completing Master's Degree in SCIENCE program will be able to:
PO 1	Demonstrate in depth understanding in the relevant science discipline. Recall, explain, extrapolate, and organize conceptual scientific knowledge for execution and application and also to evaluate its relevance.
PO 2	Critically evaluate, analyse, and comprehend a scientific problem. Think creatively, experiment and generate a solution independently, check and validate it and modify if necessary.
PO 3	Access, evaluate, understand, and compare digital information from various sources and apply it for scientific knowledge acquisition as well as scientific data analysis and presentation.
PO 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and draw relevant inferences. Communicate the research work in appropriate scientific language.
PO 5	Demonstrate initiative, competence, and tenacity at the workplace. Successfully plan and execute tasks independently as well as with team members. Effectively communicate and present complex information accurately and appropriately to different groups.
PO 6	Use an objective, unbiased and non-manipulative approach in collection and interpretation of scientific data and avoid plagiarism and violation of Intellectual Property Rights. Appreciate and be sensitive to environmental and sustainability issues and understand its scientific significance and global relevance.
PO 7	Translate academic research into innovation and creatively design scientific solutions to problems. Exemplify project plans, use management skills, and lead a team for planning and execution of a task.
PO 8	Understand cross disciplinary relevance of scientific developments and relearn and reskill so as to adapt to technological advancements.

PROGRAM SPECIFIC OUTCOMES

PSO	Description
	A student completing Master's Degree in SCIENCE program in the subject of BIOCHEMISTRY will be able to:
PSO 1	Acquire necessary knowledge and skills to undertake a career in research, either in industry or in an academic set up.
PSO 2	Compare and contrast the breadth and depth of scientific knowledge in the broad range of fields including Protein biochemistry, Bioenergetics, Diagnostic Biochemistry, Hormonal Biochemistry, Molecular Biology, Nutritional Biochemistry, and Nanotechnology.
PSO 3	Extrapolate and comprehend the regulatory role of metabolic processes and understand the underlying cause of metabolic disorders
PSO 4	Acquire thorough knowledge of Biochemical Techniques, Advanced Immunology, Physiology, Genetic Engineering, and Biotechnology
PSO 5	Describe and express the biochemical basis of human diseases, protein structure and conformation, non-invasive diagnostics, clinical research, and its importance in drug development. Usage of this knowledge further for multitude of laboratory applications.
PSO 6	Integrate and apply the techniques in Biophysics, Analytical Biochemistry, Clinical biochemistry, Microbiology, Molecular Biology and Basics in Bioinformatics
PSO 7	Gain proficiency in laboratory techniques in both Biochemistry and Molecular Biology, and be able to apply the scientific method to the processes of experimentation and Hypothesis testing
PSO 8	Develop and enhance skills & improve employability through academic, research and internship opportunities
PSO 9	Gain exposure to basic research through the provision of PG research based project.
PSO 10	Learn to work as a team as well as independently to compile and interpret Biological data, carry out Research investigations and draw conclusions

PROGRAM OUTLINE

YEAR	SEM	COURSE CODE	COURSE TITLE	CREDITS
		RPSBCH101	Membrane Biochemistry &	4
			Bioenergetics	
		RPSBCH102	Protein Biochemistry & Enzymology	4
		RPSBCH103	Biostatistics and Ecology	4
	I	RPSBCH104	Instrumentation and Analytical Techniques I	4
		RPSBCHP101	Practicals based on RPSBCH101	2
		RPSBCHP102	Practicals based on RPSBCH102	2
		RPSBCHP103	Practicals based on RPSBCH103	2
MSol		RPSBCHP104	Practicals based on RPSBCH104	2
		RPSBCH201	Industrial Biotechnology	4
		RPSBCH202	Research Methodology, IPR,	4
			Bioinformatics & Nanotechnology	
	П	RPSBCH203	Fundamentals of Genetics	4
		RPSBCH204	Instrumentation and Analytical	4
			Techniques II	
		RPSBCHP201	Practicals based on RPSBCH201	2
		RPSBCHP202	Practicals based on RPSBCH202	2
		RPSBCHP203	Practicals based on RPSBCH203	2
		RPSBCHP204	Practicals based on RPSBCH204	2
	R	AMR ^D .		

4

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

Semester I

Course Code: RPSBCH101

Course Title: Membrane Biochemistry & Bioenergetics

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	\mathbf{C}
CO 1	Understand composition and structure of bio-membranes
CO 2	Recognize the importance of transport mechanisms and cellular
	trafficking across biological membranes
CO 3	Describe different types of transporters and explain their
	mechanisms
CO 4	Comprehend the different modes of communication between cells
	including signal reception, transduction, amplification, and response.
CO 5	Know about Bioenergetics, mechanisms of oxidative
	phosphorylation
CO 6	Learn the concept and mechanism of ATP synthesis

Course	Unit	Course/ Unit Title	Credits/
Code/		Membrane Biochemistry & Bioenergetics	Lectures
Unit		RPSBCH101	4 Credits
	1	Membrane dynamics & Fluidics	15L
	1.1	Overview of membrane biochemistry	2L
	1.2	Membrane fluidity	2L
	1.2.1	Importance of membrane fluidity	
	1.2.2	Maintenance of membrane fluidity- Concept of	
		transition temperature & general characteristics	
	1.3.1	Lipid rafts- Composition significance & its role role	4L
		of lipid rafts in maintaining membrane &	
		membrane signalling	
	1.3.2	Specialized lipid rafts- Caveolae (Formation of	
1		Cavolins, Cavins and its significance in	
•		endocytosis & other mechanisms	
	1.4	Membrane dynamics	2L
		Membrane bilayer mobility- Frye Edinin	
		Experiment & FRAP analysis	
	1.5	Membrane asymmetry-	2L
		Lateral membrane asymmetry- Lipids & proteins	
		Transverse membrane asymmetry	
		Role of Flippase, Floppase and Scramblase in	
		maintaining asymmetry	
	1.6	Membrane domain and cell polarity-	2L
	1.7	Study of RBC cell- model for cell membrane	1L
	2	Membrane Transport & cellular trafficking	15L
	2.1	Passive transport – Passive diffusion (Polar & Non	3L
	DY.	polar), diffusion and osmosis, facilitated diffusion	
7		of ions and molecules	
	2.2.1	Ion channels- Ligand gated, mechanical gated,	
		Voltage gated, Anion transporter (band 3)	
	2.2.2	Molecule channels- (Glucose transporters)	
V	2.3	Primary Active transport	4L
		Atpases pump- Na ⁺ -K ⁺ Pump, Ca ²⁺ -K ⁺ Pump, ABC	
		transporter (CFTR)	
		Light driven – Bacteriorhodopsin	
	2.4	Secondary active transports-	3L

		Symport (Mechanism of Absorption of peptides by	
		enterocytes), Mechanism of Cytosolic pH	
		maintenance	
	2.5	Specialized ion channels - Aquaporins,	
		Ionophores: gramicidin, & valinomycin	
	2.6	Antiport - Absorption of peptides by enterocytes,	2L
		Antiporter in cardiac muscle cell with effect of	4
		Ouabain & digoxin	C.
	2.7	Cellular trafficking	2L
	2.7.1	The Molecular Mechanisms of Membrane	
		Transport and the Maintenance of Compartmental	
		Diversity)
	2.7.2	Gated, vesicular and transmembrane transport	1L
	3	Cell-cell communication	15L
	3.1	Introduction to Cell-cell communication & its	1L
		Biological Significance	
	3.2	Cell Adhesion and Cell adhesion molecules	4L
	3.2.1	Importance of cell adhesion and cell adhesion	
		molecules	
	3.2.2	Cadherins, Lectins and selectins (Their role and	
		importance in cell adhesion with one significant	
		example)	
	33	Cell-cell junction	31
	331	Classification	
Ш	332	Adherence junction- Focal adhesion	
	0.0.2	Hemidesmosome desmosome and their role in	
		What hat have tissue integrity	
	334	Tight junction- Role of JAM (claudins and	21
		occludins) its role in ducose transport across	~~
		intestine	
	335	Gap junction- connexon & its role in electrical	11
1		svnapse	
	34	Extracellular matrix in plants and animals	41
	341	Structure and Biological significance of	
<i>N</i> .		Collagen Elastin fibronectin Laminins and	
Y		integrins	
-	4	Oxidative Phosphorylation & its regulation	151
	<u> </u>	Oxidative phosphorylation	21
IV	<u> </u>	Electron transfer reactions in mitochondrion	26
	<u> </u>	Liniversal electron accentors – Role in biological	
	+. <i>∠</i> .1	ovidation-reduction reactions	

	4.2.2	Membrane-bound carriers (Ubiquinone,	2L
		Cytochromes, Fe-S proteins, Rieske Fe-S	
		proteins) – Structure and mechanism of electron	
		transfer	
	4.3.1	Methods for determining the sequence of electron	4L
		carriers	
	4.3.2	Structure and function of each complex of	
		mitochondrial respiratory chain	C à
	4.3.3	Separation of functional complexes of respiratory	
		chain	
	4.3.4	Flow of electrons and protons through the	
		complexes of respiratory chain	
	44	Proton motive force	11
	4.5	Alternative mechanism in plant mitochondria	
	4.5	Phosphoryl group transfers and ATP	11
	162	ATD synthesis by hinding change model for ATD	אר גר
	4.0.2	synthese	JL
	462	Syllulase Dala of luciforin in firofly floober	
	4.0.3	Chemical uncountern of evidetion and	
	4.0.4		
	4 7		
	4.7	Alternative respiratory pathway in plant	
	4.8	Regulation of oxidative phosphorylation	2L
	4.8.1	Regulation based on energy demands, in	
		oxidative stress, in brown fat and integrated	
		regulation in metabolism	
		Practicals RPSBCH101	2 Credits
	1	Diffusion rate of Biomolecules	
	2	Study the differential permeability of a semi-	
		permeable membrane	
	3	Separation of RBC membrane proteins by SDS-	
		PAGE	
7,	4	Effect of temperature and molecular weight on	
\sim		diffusion	
	5	Effect of tonicity on cell membrane	
2	6	Mitochondrial respiration and effect of different	
5		Inhibitors for ETC (Dry lab)	
	7	In-vitro study of RBC membrane stabilization	
	8	Isolation of lipids from plant and animal source	
		and their utilization in the formation of artificial	
		membrane vesicle	
	9	Graphical study of hydropathy plot and FRAP	
		analysis (Dry lab)	

- 1. Molecular Cell Biology (2016) 8th ed., Lodish, H., Berk, A., Kaiser, C.A., Krieger, M.,Bretscher, A., Ploegh, H., Amon, A. and Scott, M.P., W.H. Freeman & Company (New York).
- 2. Biochemistry (2016) 6th ed., Garret, R. H. and Grisham, C.M., Cengage Learning (Boston).
- 3. Lehninger: Principles of Biochemistry (2017) 7th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York).
- 4. Molecular Biology of the Cell (Sixth Edition) by by Bruce Alberts
- 5. Principles of Biochemistry (2008) 3rd ed., Voet, D.J., Voet, J.G. and Pratt, C.W., John Wiley & Sons, Inc. (New York), ISBN:13: 978-0470-23396-2
- 6. Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- aw, 7. Laboratory Manual in Biochemistry, 2003, J. Jayaraman, New Age International

Course Code: RPSBCH102

Course Title: Protein Biochemistry & Enzymology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand details of protein structure such as protein organization,
	end group analysis and stabilizing bonds
CO 2	Know Various techniques used in the study of protein biochemistry
CO 3	Learn Protein folding & Protein Engineering and their research - oriented applications
CO 4	Analyse Ramachandran plot and other plots with respect to kinetics
	of different enzymes
CO 5	Determine optimum temperature, pH for the activity of an enzyme.
CO 6	Determine Km and Vmax of enzymes and to analyse enzyme
	kinetics.
CO 7	Understand enzyme inhibition with more complexity.
RAMMAR	AMRUAR

Course	Unit	Course/ Unit Title	Credits/
Code/		Protein Biochemistry & Enzymology	Lectures
Unit		RPSBCH102	4 Credits
	1	Introduction to Proteins & Protein Structure	15L
	1.1	Organization of protein structure into primary,	2L
		Secondary, Tertiary and Quaternary structures	
	1.2.1	Primary structure determination of protein	2L
		End group analysis-N & C terminal amino acid	
		analysis – By dansyl chloride, Sanger's Reagent, 🤇	
		Edman's degradation, Exopeptidase	
	1.2.2	Cleavage of disulphide bond	
	1.3	Mass spectrometry for protein analysis, Tandem	3L
		MS, Solid phase peptide synthesis	
I	1.4	Nature of stabilizing bond – covalent and non-	
		covalent.	
	1.5	The peptide bond length & configuration-Dihydral	2L
		angle psi and phi, Helices, sheets and turns –	
		Ramachandran plot	
	1.6	Techniques used to study 3D Structures- X-ray	2L
		diffraction, NMR	
	1.7	Supersecondary structures: Motifs and domains	2L
	1.8	Tertiary and quaternary structures- Structure of	2L
		haemoglobin and myoglobin	
	2	Protein folding & Protein Engineering	15L
	2.1	Protein denaturation and folding (Ribonuclease A)	2L
	2.1.1	Importance of primary structure in folding	
	2.2	Molecular mechanism of protein folding	2L
	2.3	Role of chaperons, chaperonins & PDI in protein	2L
	K.	folding	
I	2.4	Disorders related to protein folding- Alzheimer's	2L
		and prion disease	
6.	2.5	Protein Engineering	3L
	2.5.1	Basic principles, Types and Methods	
	2.5.2	Strategies in protein engineering (Directed	4L
		evolution, Comparative design, Rational design)	
	2.5.3	Applications and case studies.	
	3	Enzyme kinetics and inhibition	15L
III	3.1	Introduction to enzymes, mechanism of enzyme	3L
		action	

	2.0		
	3.2	Types of enzyme catalysis – Acid base, Covalent	
		& metal ion	
	3.3	Enzyme kinetics	4L
	3.3.1	The Relationship between Substrate	
		Concentration and Reaction Rate- Michaelis-	
		Menten Kinetics of monosubstrate enzyme	
		reaction, LB Plot, Einsethal Cornish Bowden Plots	
		& Eadie- Hofstee plot	. Ca
	3.4	Enzyme inhibition	4L
		Types of inhibitors- Competitive, Non-competitive	
		and Uncompetitive, Mixed, Suicidal inhibition and	
		their mode of action and experimental)
		determination considering suitable example	
	3.5	Allosteric enzymes	4L
		Mechanism of action, deviation from MM equation	1
		and allosteric regulation	
			-
		Allosteric interactions- protein ligand binding, co-	
		Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot	
	4	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications	15L
	4 4.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback	15L 3L
	4 4.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression	15L 3L
	4 4.1 4.2.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation,	15L 3L 3L
	4 4.1 4.2.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation,	15L 3L 3L
	4 4.1 4.2.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation)	15L 3L 3L
	4 4.1 4.2.1 4.2.2	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage	15L 3L 3L
	4 4.1 4.2.1 4.2.2 4.3	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following –	15L 3L 3L 2L
IV	4 4.1 4.2.1 4.2.2 4.3	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A	15L 3L 3L 2L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes	15L 3L 3L 2L 2L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for	15L 3L 3L 2L 2L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for industrial use	15L 3L 3L 2L 2L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for industrial use Methods of immobilization- Ionic bonding,	15L 3L 3L 2L 2L 4L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for industrial use Methods of immobilization- Ionic bonding, Adsorption, Covalent bonding (based on R group	15L 3L 3L 2L 2L 4L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for industrial use Methods of immobilization- Ionic bonding, Adsorption, Covalent bonding (based on R group of amino acids), Microencapsulation and Gel	15L 3L 3L 2L 2L 4L
IV	4 4.1 4.2.1 4.2.2 4.3 4.4 4.4.1 4.4.2	Allosteric interactions- protein ligand binding, co- operativity, Hill & Scatchard plot Enzyme regulation and modifications Enzyme regulation- Product inhibition, Feedback control, Enzyme induction and repression Enzyme modification reactions (Phosphorylation, Adenylation, Uridylylation, ADP-ribosylation, Methylation) Regulation of enzymes by proteolytic cleavage Enzymatic action and biological role of following – Hexokinase, Chymotrypsin, Carboxypeptidase A Immobilized enzymes Relative practical and economic advantage for industrial use Methods of immobilization- Ionic bonding, Adsorption, Covalent bonding (based on R group of amino acids), Microencapsulation and Gel entrapment.	15L 3L 3L 2L 2L 4L

	Practicals – RPSBCHP102	2 Credits
1	Qualitative test for amino acids, proteins	
2	Cytochemical staining of proteins by Methylene	
	blue	
3	Estimation of proteins using UV-absorbance and	
	Biuret method.	
4	Estimation of proteins using Lowry method	
5	Study of Ramachandran plot (Dry lab)	C À
6	Study of protein denaturation – change in	
	isoelectric pH and colorimetric assay for cysteine	
7	Determination of optimum pH of β-	
	Amylase/Invertase/Urease	
8	Determination of optimum temperature of β -	
	Amylase/Invertase/Urease	
9	Determination of Km and Vmax of β -	
	Amylase/Invertase/Urease	
10	Assay to determine enzyme activity and specific	
	activity	
11	Study the effect of inhibitor on β -	
	Amylase/Invertase/Urease	
12	Comparative assessment of the β-	
- —	Amylase/Invertase/Urease activity in free and	
	immobilized state	
	1 2 3 4 5 6 7 8 9 10 11 12	 Practicals - RPSBCHP102 Qualitative test for amino acids, proteins Cytochemical staining of proteins by Methylene blue Estimation of proteins using UV-absorbance and Biuret method. Estimation of proteins using Lowry method Study of Ramachandran plot (Dry lab) Study of protein denaturation – change in isoelectric pH and colorimetric assay for cysteine Determination of optimum pH of β- Amylase/Invertase/Urease Determination of Km and Vmax of β- Amylase/Invertase/Urease Determination of Km and Vmax of β- Amylase/Invertase/Urease Comparative assessment of the β- Amylase/Invertase/Urease Comparative assessment of the β- Amylase/Invertase/Urease

- 1. A.L., Lehninger, Principles of Biochemistry (1982), Worth Publishers, Inc. New York.
- 2. Harper's Biochemistry Murray, Granner, Mayes, and Rodwell Prentice Hall International Inc.
- Textbook of medical physiology: A. C. Gyton, and J. E HallSaunders Elsevier Publications, A division of Reed Elsevier India Pvt .Ltd.New Delhi ISBN 81-8147-084-2
- 4. Advances in Enzymology and Related Areas of Molecular Biology, Mechanism of Enzyme Action, Daniel Purich
- 5. Medical Biochemistry by Ramakrishnan (2012)
- 6. ENZYMES: Catalysis, Kinetics and Mechanisms by N.S. Punekar
- 7. Molecular and cellular enzymology by Jeannine Yon-Kahn, G. Hervé.
- 8. Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 9. J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

Course Code: RPSBCH103

Course Title: Biostatistics and Ecology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Acquire hands-on practical training to plan biological experiments with requisite sample size. After completion of experiments based on different sample sizes students will be able to perform proper statistical analysis of the data using mean, median, mode, Range, percentiles, variance, SD, Mean deviation and Coefficient of variation
CO 2	Apply the principles of biological data management in real life situations.
CO 3	Learn R software and this training will improve computational, mathematical and computer skills of the students.
CO 4	Make the use of Hypothesis testing, Chi-square, Correlation & Regression, Normal distribution, ANOVA, Probability in their research work.
CO 5	Know statistical methods and it will help them in improving their analytical and interpretation skills
CO 6	Understand different concepts in population studies and ecology
RAMMAR	

Course	Unit	Course/ Unit Title	Credits/
Code/		Biostatistics and Ecology	Lectures
Unit		RPSBCH103	4 Credits
	1	Descriptive statistics and Probability	15L
	1.1	Descriptive statistics:	5L
	1.1.1	Measures of central tendency - Mean, Median and	
		mode	
	1.1.2	Measures of dispersion- Range, percentiles,	5L
		variance, SD, Mean deviation, Coefficient of	
I		variation	
	3.1	Probability	5L
	3.1.1	Operations on events and probability	
	3.1.2	Conditional probability	
	3.1.3	Addition & Multiplication laws	
	3.1.4	Concept of odds in favour and odds against	
	2	Normal distribution, Hypothesis testing and	15L
		ANOVA	
	2.1.1	Normal distribution and skewness	3L
	2.1.2	Normal variate & its significance	
	2.2	Hypothesis testing –	4L
II		z-test – one sample, two samples	
		One sample t-test	
		Independent and Paired t-test	5L
	2.3	Standard error	
	2.4	ANOVA – characteristics and types One way	3L
		ANOVA testing	
	3	Chi-square, Correlation & Regression and	15L
	0	Introduction to R-software	
0,	3.2	Chi-square	2L
. 0	3.2.1	Test of population variance	
	3.2.2	Test of goodness of fit	3L
	3.2.3	Test of association - 2 x 2 Table, Yates' correction	
	1.2	Correlation	4L
	1.2.1	Introduction to Correlation, Bivariate & multivariate	
		distributions,	
	1.2.2	l ypes of correlation	
	1.2.3	Measure of correlation – Karl Pearson, Spearman	
		rank order and scatter plot	
	1.3	Regression	3L

	1.3.1	Concept of regression, Types of regression	
	1.3.2	Regression coefficient and equation	
	1.3.3	Simple & multiple regression	
	3.3	Introduction & application of R-software	3L
	4	Ecology	15L
	4.1	Introduction to ecology	1L
	4.2	Habitat and Niche	3L
		Concept of habitat and niche; niche width and	. (1
		overlap; fundamental and realized niche; resource	
		partitioning; character displacement	
	4.3	Population Ecology	4L
		Characteristics of a population: population growth)*
		curves; population regulation; life history	
IV		strategies (r and K selection); concept of	
		metapopulation – demes and dispersal, interdemic	
		extinctions, age structured populations	
	4.4	Species Interactions	3L
		Types of interactions, interspecific competition,	
		herbivory, carnivory, pollination, symbiosis	
	4.5	Community Ecology	4L
		Nature of communities: community structure and	
		attributes: levels of species diversity and its	
		measurement; edges and ecotones	
		Practicals – RPSBCHP103	2 Credits
	1	Introduction & application of R-software	
	2	Descriptive statistics using Microsoft excel/ R-	
		software	
	3	Hypothesis testing of means & ANOVA using	
		excel/ R-software	
	4	Hypothesis testing of difference between means &	
	5	Chi-square test using excel/ R-software	
7.	6	Correlation & Regression using excel/ R-software	
	7	Study of Gause principle using Paramecium	
\mathcal{A}		species (K-strategies) as study model	
	8	Study of logistic vs exponential growth curve and	
S		problems on population ecology	
	9	Graphical study of Lotka Voltera competition	
		equation	
		•	

- 1. Biostatistics by Arora
- 2. B.K. Mahajan. Jaypee brothers, Methods in biostatistics for medical & research workers. 6thedition, Medical Publishers (P) ltd.
- 3. Wayne Daniel, Biostatistics: A Foundation for Analysis in Health Sciences, 10th edition, 2013, Wiley.
- 4. Analysis of Biological Data, M. Whitlock and D. Schluter (2009); Roberts and company publishers
- 5. Statistical Modeling: A Fresh Approach by Daniel Kaplan
- 6. Research methodology Methods and Techniques by C.R. Kothari
- 7. OdumE.P. Fundamentals of Ecology, sauders publication; Indian edition, Nataraj Publications Dehradun, 1998.
- 8. Verma, P.S. and Agarwal, V.K. Concept of ecology (Environmental Biology), S.Chand & AMMARAMARUAAUTONOMOW Co. Ltd., New Delhi 2004.

Course Code: RPSBCH104

Course Title: Instrumentation and Analytical Techniques I

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME					
CO 1	Gain expertise in the isolation of various biomolecules and organelles.				
CO 2	Obtain hands-on training in basic separation techniques in				
	biochemistry and gain expertise in the isolation of various				
	biomolecules and organelles				
CO 3	Acquire a sound background of latest methods used in biochemistry				
	for purification of enzymes, isolation and characterization of proteins,				
	nucleic acids, etc.				
CO 4	Develop practical skills related to applications of spectroscopy,				
	chromatography, electrophoresis				
CO 5	Get equipped with the latest techniques used in analysis of				
	biomolecules and this will help them in undertaking further research				
	in the area of biochemistry in any research/industrial institution.				

...e area of bioc

Course	Unit	Course/ Unit Title	Credits/
Code/		Instrumentation and Analytical Techniques I	Lectures
Unit		RPSBCH104	4 Credits
	1	Spectrophotometric techniques based on	15L
		photometry	
	1.1	Introduction to spectrophotometric techniques	1L
	1.2.	Principle, Instrumentation, Working & Biochemical	
		applications of:	
I	1.2.1	Ultraviolet and visible light spectroscopy	3L
	1.2.2	Fluorescence spectroscopy	2L
	1.2.3	Luminometry	2L
	1.2.4	Circular dichroism spectroscopy	2L
	1.2.5	Light scattering	2L
	1.2.6	Atomic spectroscopy	3L
	2	Introduction to Chromatography	15L
	2.1	Principle of chromatography – distribution	2L
		coefficient, retention time, retention factor, eddy	
		diffusion, Theoretical plates	
	2.2	Types of Chromatography	
	2.2.1	Planar Chromatography	4L
		Paper Chromatography, TLC and HPTLC	
		(Principle, working and applications)	
п	2.2.2	Column Chromatography	3L
		Partition chromatography	
		Normal phase Vs reverse phase chromatography	
		Chiral chromatography	
		Ion-exchange chromatography	3L
	QY.	Hydrophobic interaction chromatography /Size	
7.		exclusion	
		Affinity chromatography-	3L
11		Immunoaffinity chromatography	
		Metal chelate ligand chromatography	
	3	Introduction to Electrophoresis and advanced	15L
		electrophoresis techniques	
	3.1	General principle of electrophoresis, and concept	2L
III		of electroendo-osmotic flow and Frictional	
		coefficient	
	3.2	Types of Electrophoresis based on apparatus and	
		supporting matrix	

	3.3	Electrophoresis of proteins	5L
		Polyacrylamide gel (cross-linking reaction for the	
		formation of polyacrylamide gel)	
		Continuous and Discontinuous buffer system SDS	
		PAGE, Native PAGE, Gradient gel, Isoelectric	
		focusing gel, 2D Gel	
		Detection, estimation and recovery of Proteins in	
		gels- Staining techniques (CBB, Silver staining,	. Cr
		Zinc staining), protein blotting	
	3.4	Electrophoresis of nucleic acid –	3L
		Electrophoresis of DNA –AGE, PFGE	
		Electrophoresis of RNA)
		Detection of Nucleic acid in gel- Ethidium bromide,	
		syber green	
	3.5	Advanced electrophoresis- Capillary	4L
		electrophoresis, Immunoelectrophoresis, Microchip	
		electrophoresis	
	3.6	Gel documentation system- Principle and its	1L
		application	
	4	Radioisotopic Techniques	15L
	4.1	Radioisotopes - Radioisotope Decay, Production of	5L
		Isotopes, Synthesis of labelled compounds,	
		Interaction of Radioactivity with matter,	
		Measurement of Radioactivity with matter	
	4.2	Radio-activity counters	5L
	4.2.1	Methods based upon Gas Ionization (Ionization	
N7		Chambers, Proportional Counters, Fundamentals	
IV		of Geiger Counters)	
	4.2.2	Photographic methods	
	4.2.3	Methods based upon excitation - Liquid	4L
	$\langle \mathcal{A} \rangle$	Scintillation counting	
7,	4.3.1	Uses of Stable Isotopes in Biology & Clinical	
		Diagnostics	
	4.3.2	Commonly used Isotopes	
	4.4	Safety Aspects and Precautions	1L
		Practicals – RPSBCHP104	2 Credits
	1	Estimation of glucose by DNSA method	
	2	Estimation of Na and K using flame photometer	
	3	Separation of amino acids/ sugars/ bases by thin	
		layer chromatography/paper	
	4	Ammonium sulphate fractionation of proteins	
	5	Separation of protein by SDS PAGE	

6	Separation of proteins by gel filtration	
	chromatography	
7	Separation of proteins using anion-exchange	
	chromatography	
8	Two dimensional chromatography of amino acids	
9	Partial purification of an enzyme	
10	Determination of pKa of acetic acid and glycine.	

- Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Analytical Biochemistry by David Holme and Hazel Peck
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Chromatography G. Abbott

ZAMMARAMARUIA

- 8. Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 9. J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International

Modality of Assessment (SEMESTER I)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of 02 1/2 HOURS duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	
Q1. B	Any 2 out of 3	06	
Q2. A	Any 1 out of 2	03	
Q2. B	Any 2 out of 3	06	
Q3. A	Any 1 out of 2	03	
Q3. B	Any 2 out of 3	06	
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV	
Laboratory work	25	
Viva	5	
Total	30	

Overall Examination & Marks Distribution Pattern

Semester I

Course	ourse 101 102				Grand Total		
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Course	103		103 104				Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100
AMMAT			·	·			•

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

Course Code: RPSBCH201

Course Title: Industrial Biotechnology

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Understand the fermentation process, inoculum development and
	fermentation media.
CO 2	Acquire information about large scale production and purification of
	various industrially important produces.
CO 3	Procure information about types and applications of biosensors in
	the field of biology.
CO 4	Obtain knowledge about production of different types of vaccines
CO 5	Realize the importance and identify the requirements for the
	compliance of QC, QA, GMP and GLP
	<i>P</i> ,
8	
N.	

Course	Unit	Course/ Unit Title	Credits/
Code/		Industrial Biotechnology	Lectures
Unit		RPSBCH201	4 Credits
	1	Industrial Importance of Carbohydrates,	15L
		Proteins & Lipids	
	1.1	Carbohydrates of industrial importance	2L
	1.1.1	Manufacturing and refining of cane sugar, pectin & cellulose	
	1.1.2	Manufacturing of polysaccharides-Plant polysaccharide (Gum Arabic), microbial polysaccharides– modified starches & celluloses	3L
	1.2	Lipids of industrial importance	3L
I	1.2.1	Extraction and refining of vegetable oils and animal fats & essential oils	
	1.2.2	Extraction and applications of chlorophyll, carotene, lycopene Turmeric	2L
	1.3	Proteins of industrial importance	5L
	1.3.1	Hormones – conventional & engineered-Insulin, Erythropoietin, Growth hormones	
	1.3.2	Non – catalytic industrial proteins – casein, whey	
		proteins, Egg proteins, wheat germ proteins.	
	2	Biosensors & Vaccine Technology	15L
	2.1	Biosensors	2L
	2.1.1	Beneficial features of biosensors	
	2.1.2	Basic components of biosensor	
	2.2	Types: Electrochemical, Thermometric, Optical,	2L
~		(Construction and development)	
		Types of biosensors, their construction, working	
i N		and application in various industries and medicine	
<u>N</u>	2.2.1	Calorimetric biosensor – Enzyme based sensors	3L
		(Importance in clinical diagnosis)	
	2.2.2	Potentiometric biosensor- Ion selective electrode	
		(Importance in environmental monitoring)	
	2.2.3	Amperometric biosensor- (Glucose monitorina)	
		Optical biosensor- Chromogenic reaction	
	2.2.4	Piezo-electric biosensor –Crystal study	1L
	2.2.5	Immunosensor - ELISA	
	1		

	2.3	Production of vaccine	2L
	2.3.1	Vaccine derived from whole organism Attenuated	
		& Inactivated vaccine	
	2.3.2	Vaccine derived from macromolecules purified from pathogenic organism – Use of Bacterial polysaccharide, Toxoid, Proteins, Synthetic peptide for vaccine development	3L
·	2.3.3	Recombinant vector vaccine	\sim
	2.3.4	Multivalent subunit vaccine- (SMAA complex & ISCOM)	2L
	2.3.5	DNA vaccine (Production & applications)	
	2.3.6	Anti-Idiotype vaccine (Use of hybridoma technology))
	3	Bioprocess technology	15L
	3.1	Upstream processing:	2L
	3.1.1	Strains and Strain Improvement of industrial	
	312	Isolation of industrially important microorganisms	
	313	Improvement of industrial microorganisms	31
		a) Selection of induced mutants for primary metabolite	
		 b) Isolation of induced mutants for secondary metabolites 	
	3.1.4	Sterilization i) Introduction ii) Media sterilization	
	3.1.5	Design and methods of batch sterilization	2L
	3.1.6	Design and methods of continuous sterilization	
111	3.2	Downstream processing	5L
M	3.2.1	 Recovery & Purification of fermentation products: i. Introduction, Precipitation, Filtration - theory, filter-aids, batch filters (Plate and frame filters), continuous filters (Rotary vacuum), Centrifugation: flocculating agent, range of centrifuges - Basket, tubular bowl. ii. Cell disruption: Physico-chemical. 	
	3.3	 III. Liquid – Liquid extraction, Solvent recovery, iv. Chromatography, Ultrafiltration, reverse osmosis, liquid membranes, drying, crystallization, Whole broth processing. Environmental aspects Effluent treatment and regulations for fermentation 	3L
	3.3.2	industry Modern methods of effluent treatment	

	4	Total Quality Management (QC, QA, GLP, GMP)	15L
	4.1	Importance of Laboratory Quality	2L
	4.1.1	Overview of the quality management system	
	4.2	Introduction and Concept (in labs & production	3L
		processes) of -	
	4.2.1	QC – Types, Requirement to implement QC,	
IV		Control materials	
I.V.	4.2.2	QA – SOP, Calibration, Auditing and checking	3L
		compliance	
	4.2.3	GMP – Sanitation and Hygiene, Qualification and	3L
		validation, Documentation of GMP practices	
	4.2.4	GLP – Protocol, Standard Operating Procedures	4L
		(SOPs), Validation of methods, Audits and	
		Inspection	
		Practicals – RPSBCHP201	2 Credits
	1	Estimation of Total Carbohydrates by anthrone	
		method	
	2	Colorimetric estimation of fructose	
	3	Isolation of pectin form apples	
	4	Isolation of proteins from germinating seeds	
	5	Isolation of albumins & globulins from egg white	
	6	Isolation of Casein	
	7	Isolation of Lecithin & Cholesterol from egg yolk	
	8	Extraction of oils using Soxhlet apparatus and it's	
		analysis	
	9	Bioassay of penicillin/ampicillin	
	10	Bioassay of vitamin B ₁₂	
	11	Quality control experiments	
	12	Virtual Lab – Bioreactor modelling & Simulation	
		Lab	

- 1) L.E.Casida, Industrial Microbiology, New Age International publishers
- 2) Biosensors: Fundamentals and Applications, Bansi Dhar Malhotra and Chandra Mouli Pandey (Smithers Rapra)
- 3) Handbook of Good Laboratory Practices (GLP), Second Edition World Health Organization
- 4) Quality Assurance A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes, Jamie Bartram and Gareth Rees, World Health Organization
- 5) M. Pelczar, E.C.S. Chan and M.R. Krieg, MICROBIOLOGY, McGraw Hill Inc., Singapore (1997).

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

- 6) L. E. Casida, Industrial microbiology, New age international publishers
- 7) Industrial Fermentation by Paul Allen
- 8) Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- REAMMARIAN 9) J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International

28

Course Code: RPSBCH202

Course Title: Research Methodology, IPR, Bioinformatics & Nanotechnology

Academic year 2020-21

COURSE OUTCOMES:

OUTCOMECO 1Understand the objectives of doing scientific research.CO 2Learn how to identify the area of research to be conducted, how to proceed for literature survey using a variety of sources and how to write research project proposal with well-placed hypothesis and objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	COURSE	DESCRIPTION
CO 1Understand the objectives of doing scientific research.CO 2Learn how to identify the area of research to be conducted, how to proceed for literature survey using a variety of sources and how to write research project proposal with well-placed hypothesis and objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	OUTCOME	
CO 2Learn how to identify the area of research to be conducted, how to proceed for literature survey using a variety of sources and how to write research project proposal with well-placed hypothesis and objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 1	Understand the objectives of doing scientific research.
proceed for literature survey using a variety of sources and how to write research project proposal with well-placed hypothesis and objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 2	Learn how to identify the area of research to be conducted, how to
write research project proposal with well-placed hypothesis and objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		proceed for literature survey using a variety of sources and how to
objectives.CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		write research project proposal with well-placed hypothesis and
CO 3Learn the skills of research design, nature of sample size as well as collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		objectives.
collection and analysis of data.CO 4Know the skills of writing research report and making oral presentations.CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 3	Learn the skills of research design, nature of sample size as well as
 CO 4 Know the skills of writing research report and making oral presentations. CO 5 Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated. CO 6 Understand methods used for bioinformatics studies. CO 7 Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines. CO 8 Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them. 		collection and analysis of data.
CO 5Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 4	Know the skills of writing research report and making oral
 CO 5 Understand the significance of studying different variables in a research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated. CO 6 Understand methods used for bioinformatics studies. CO 7 Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines. CO 8 Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them. 		presentations.
research study and its effects on the results obtained and the importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 5	Understand the significance of studying different variables in a
 importance of the statistical analysis of the results. At the end the students will also be aware of different methodologies by which research can be effectively communicated. CO 6 Understand methods used for bioinformatics studies. CO 7 Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines. CO 8 Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them. 		research study and its effects on the results obtained and the
students will also be aware of different methodologies by which research can be effectively communicated.CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		importance of the statistical analysis of the results. At the end the
CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		students will also be aware of different methodologies by which
CO 6Understand methods used for bioinformatics studies.CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		research can be effectively communicated.
CO 7Comprehend the synthesis of nanomaterials and their applications in the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 6	Understand methods used for bioinformatics studies.
the field of biology and medicines.CO 8Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 7	Comprehend the synthesis of nanomaterials and their applications in
CO 8 Appreciate the technological advances in the field of nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.		the field of biology and medicines.
nanobiotechnology and get fascinated with the advances in the research field and try to pursue them.	CO 8	Appreciate the technological advances in the field of
Versearch field and try to pursue them.		nanobiotechnology and get fascinated with the advances in the
	0-	research field and try to pursue them.
	\mathcal{A}'	
	$\langle N \rangle$	

Course	Unit	Course/ Unit Title	Credits/
Code/		Research Methodology, IPR,	Lectures
Unit		Bioinformatics & Nanotechnology	4 Credits
		RPSBCH202	_
	1	Research, Research Design & Presentation	15L
	1.1	Research	4L O
	1.1.1	Meaning of research, Objectives of research,	
		Types of Research, Research Process	
	1.1.2	Criteria for good research, Significance of	
		research.	
	1.2	Research Problem	
	1.2.1	Formulating research problem	
	1.2.2	Problems encountered by a researcher	
	1.3	Research Design	
	1.3.1	Meaning and need for research design, Features	
		of good research design,	
	1.3.2	Types of research designs – exploratory,	6L
		descriptive, experimental, survey and case study.	
	1.3.3	Different research designs and their basic	
I		principle.	
		Study Designs and Variations (only definitions):	
		Prospective, retrospective, prospective &	
		retrospective, observational, experimental, clinical	
		trials, RCT, Cohort, cross sectional and case-	
		controlled studies.	
	1.3	Presentation	5L
	1.3.1	Methodology for writing a report and oral	
	DY	presentation	
. 6	1.3.2	Presentation – Oral & Written. Use of digital	
		media.	
\mathcal{A}	1.3.3	Preparing for oral presentation, Structure of oral	
		presentation	
Y .	1.3.4	Giving the oral presentation - Presentations in	
		classrooms, scientific meets & public audience.	
	-		451
	2	Report Writing & IPR and Patents	15L
II	2.1	Report Writing	8L
	2.1.1	Significance of report writing, Different steps in	
		report writing, types of report.	

	2.1.2	Mechanics and precautions of writing research	
		reports for scientific journals, popular magazines,	
		seminars/symposia/ conferences/workshops	
	2.1.3	Layout of research report, Layout for poster	
	2.2	Intellectual Property Right (IPR)	7L
	2.2.1	Introduction, Types, Objectives, Applications.	
	2.2.2	Patents- Definition and concept. Types. Criteria.	
		Registration of Patents	C
	3	Bioinformatics	15L
	3.1	Introduction to In silico biology - Aim, Scope,	2L
		Application & limitations	
	32	Introduction to Biological Databases	51
	321	Types of Biological Databases – primary &	01
		Secondary & Specialized databases	
	322	Information Retrieval from Biological Databases	
	0.2.2	Biological Databases and retrieval techniques	
		Nucleotide Databases- Genbank FMRI DDR I	
		Literature Database- Pubmed Medline	
		Protein Sequence Databases- Swissprot PIR	
		TrEMBL	
		Protein Structural Databases- PDB, RasMol SCOP, CATH	
		Metabolic pathway database- KEGG, Metacyc, Ecocyc, Biocyc	
111		Other databases- OMIM. Taxonomy	
		Sequence Alignment	
		Pairwise Sequence Alignment	
	3.3	Evolutionary Basis	2L
		Sequence Homology versus Sequence Similarity	
	OX	Sequence Similarity versus Sequence Identity	
1	X	Statistical Significance of Sequence Alignment	
	3.4	Protein Motifs and Domain Prediction.	2L
		Identification of Motifs and Domains in Multiple	
<i>N</i> .		Sequence Alignment	
Y	3.5	Motif and Domain Databases Using Regular	2L
		Expressions	_
		Motif and Domain Databases Using Statistical	
		Models	
	3.6	Molecular phylogenetics	2L
		Phylogenetic analysis, phylogenetic tree and its importance	

	4	Nanotechnology	15L
	4.1	Nanomaterials-its synthesis and applications	2L
	4.1.1	Synthesis of Nanoparticles – Solvent Extraction,	
		Emulsification, Salting out, Solvent Displacement,	
		Spray Drying	
	4.1.2	Synthesis of Nanocapsules – Nanoprecipitation,	2L
		Emulsion, – Diffusion, Double emulsification,	
		Emulsion coacervation, Layer by layer	C
	4.1.3	Synthesis Nanotubes – Arc-vaporization, Laser	2L
IV		ablation, Chemical Vapour Deposition	
	4.2	Gold Nanoparticles – Types and its applications in	4L
		biology	
	4.3	Lab-on-a-chip (LOC) – Principle & role in clinical	
		diagnosis	
	4.4	Nanotherapeutics	3L
	4.5	Nanotoxicity	
	4.5.1	Absorption and distribution of Nanoparticles	2L
	4.5.2	Toxicological effects of nanoparticles in various	
		target organs	
		Practicals – RPSBCHP202	2 Credits
	1	Collection of Biochemical data and its presentation	
	2	Review of research work carried out of any 5	
		national or international research centers or	
		institutes	
	3	Presentation of review of research using	
		powerpoint	
	4	Preparation of research proposal for minor/ maior	
		research projects to be submitted to the funding	
		agencies	
	5	Sequence retrieval (protein and gene) from NCBI	
		and Molecular file formats - FASTA	
	2	GenBank/Genpept	
	6	BLAST suite of tools for pairwise alignment	
	7	Molecular Visualization Softwares: Pymol and	
11_		Rasmol for protein structures from PDR	
N.	8	Multiple sequence alignment (CLUSTALW/	
X -	0	TCoffee) and Construction of phylogenetic trees	
	0	Preparation of panaparticlos and applying	
	9	Freparation of hanoparticles and analysis	

- 1) Research Methodology methods and techniques, Second Revised Edition, C.R.Kothari (New Age International Publishers)
- 2) Bhattacharya, D. K. (2003): Research Methodology, Excel Books, New Delhi

- 3) Research Methods Lippinott Company, U.K.
- 4) Bioinformatics methods and applications, Genomics, Proteomics and drug discovery, Fourth Edition, S.C.Rastogi
- 5) Introduction to Bioinformatics in Microbiology. Henrik Christensen, Springer International Publishing (2018)
- 6) Introduction to Bioinformatics. Arthur Lesk, Oxford University Press (2013)
- al press. 7) Nanobiotechnology, David Andrew Phoenix & Waqar Ahmed (One central press Itd)

33

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2020-2021

Course Code: RPSBCH203

Course Title: Fundamentals of Genetics

Academic year 2020-21

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Strengthen the fundamentals of Mendelian and neo-Mendelian genetics.
CO 2	Understand the structure of DNA & RNA
CO 3	Learn and apply concepts like epistasis, gene mapping, tetrad and
	Pedigree analysis which will be helpful in competitive examinations
CO 4	Acquire knowledge about Organization of DNA in genome
CO 5	Gain a thorough understanding of the mechanism of cell cycle,
	relationship of cell cycle and programmed cell death via intracellular
	and extracellular control mechanisms
CO 6	Know about mechanism of DNA replication which would lay a
	foundation for studying next processes of central dogma.
C07	Enlist different types of mutations, agents causing mutations and
	disorders resulting from mutations.

Course	Unit	Course/ Unit Title	Credits/
Code/		Fundamentals of Genetics	Lectures
Unit		RPSBCH203	4 Credits
	1	Genetics I	15L
	1.1	Non –Mendelian inheritance	3L
	1.1.1	Molecular mechanism of Incomplete dominance,	
		co-dominance & Overdominance	
	1.1.2	Incomplete penetrance	
	1.1.3	Epistasis & Environmental effect on phenotype	3L
	1.1.4	Sex linked inheritance, Sex influenced inheritance	
		& Sex limited inheritance	
	1.1.5	Allelic effects- Pleiotropy, Polygenic inheritance	
	1.1.6	Maternal gene effect, Maternal inheritance &	2L
I		cytoplasmic inheritance	
	1.2	Pedigree analysis – Pedigree conventions and	3L
		analysing pedigrees, Problems based on these	
		concept	
	1.3	Structure of Nucleic acid	3L
	1.3.1	Structure and characteristic of DNA & RNA -	
		double helical structure	
	1.3.2	A, B & Z DNA, liner and circular DNA.	
	1.4	Tm of DNA, its relation to GC content,	
	1.5	Types of RNA, structure & functions	
	1.6	Cot curves and its significance, C-value paradox	1L
	2	Genetics II	15L
	2.1	Eukaryotic chromosomes, Unique and repetitive	4L
		sequences of DNA	
	2.2	Organization of DNA in genome	
. 0	2.3	Histones, nucleosomes, structure of chromatin,	
		cohesion protein	
	2.4	Lampbrush & polytene chromosomes	2L
	2.5	Genetic recombinations: Holliday models	
5	2.6.1	Gene mapping – Basis and Merits	4L
	2.6.2	Linear order of genes, Relative distance between	
		linked genes, Coefficient of coincidence,	
		Interference	
	2.7	Tetrad analysis – Ordered & Unordered tetrad	2L
	2.8	Problems based on above concept	3L

	3	Cell Cycle and its regulation & DNA	15L
		Replication	
	3.1	Cell cycle and its regulation	3L
	3.1.1	Phases of cell cycle and its regulation (Cyclins & CDKs)	
	3.1.2	State of DNA in different phases of cell cycle	
	3.2	Replication of DNA	2L
	3.2.1	Structural overview of DNA Replication	. (^
	3.2.2	Models for DNA replication- Conservative, Semi-	
	0.0.0	conservative & dispersive	
	3.2.3	Experimental evidences	
III	3.2.4	Enzymes and proteins involved in replication	2L
	3.2.5	Mechanism of Bacterial DNA replication	
	3.3	Replication of DNA in yeast	2L
	3.3.1	Eukaryotic DNA polymerases	
	3.3.2	Proteins and accessory molecules essential in the	
		initiation, and elongation steps	
	3.3.3	Mechanism (Pre-RC assembly, Initiation,	2L
		elongation & termination)	
	3.3.4	Concept of Okazaki fragment maturation & stalled	3L
		replication fork	
	3.3.5	End replication problem and role of telomerases	
	3.4	Comparative overview of DNA replication in	1L
		prokaryotes and eukaryotes	
	4	Mutations, Chromosomal Abnormalities & DNA	15L
		Repair	
	4.1	Mutations	3L
	4.1.1	Types of mutations	
	412	Physical, chemical and Biological agents causing	
	7.1.2	mutations	
-	4.1.3	Reverse mutations, Mutagenesis, Ames test.	
IV	4.2	Chromosomal aberration	3L
	4.2.1	Variations in chromosome structure - inversions,	
		deletions, duplications and translocations	
Y .	4.2.2	Variations in chromosome number - Euploidy and	
		aneuploidy (Autosomal and Sex chromosomes)	
	4.3	Syndromes resulting from chromosomal	4L
		abnormalities	
	4.3.1	Monosomies (Turner syndrome)	

4.3.2	Disomies and trisomies (Down Syndrome,	
	Klinefelter's syndrome)	
4.3.3	Cri-du-chat syndrome, Philadelphia chromosome	
4.3.4	Chromosomal Microdeletions – Prader-Willi	
	Syndrome & Angelman Syndrome	
4.4	Recognition of DNA lesions and molecular	5L
	mechanism of the following DNA Repairs -	
4.4.1	Direct repair (Photoreactivation, O6 methyl	
	guanine DNA methyl transferase)	
4.4.2	Single strand repairs - Base & Nucleotide Excision	
	Repairs, Mismatch repair (Hemimethylation of	
	DNA)	
4.4.3	Translesion synthesis and SOS repair	
4.4.4	Recombinational repair	
	Practicals – RPSBCHP203	2 Credits
1	Qualitative test for nucleic acids	
2	Cytochemical staining of RNA by Methyl Green	
	Pyronin	
3	Squash preparation of salivary glands of Dipteran	
	larva to observe polytene chromosomes	
4	Induction of polyploidy in onion roots	
5	Smear technique to demonstrate sex chromatin in	
	buccal epithelial cells.	
6	Isolation and spooling of DNA from onion/ moong	
7	To hydrolyze DNA and separate nucleotide bases	
	by paper chromatography	
8	Study of abnormal human karyotype and	
	pedigrees (dry lab)	
9	Problems based on gene mapping	

- 1) E.J. Gardner and D.P. Snustad. PRINCIPAL OF GENETICS (1984), John Wiley & Sons, Ney York.
- 2) Watson, Baker, Bell, Gann, Levine, Losick, "Molecular Biology of the Gene", Fifth Edition, Pearson Education (LPE)
- 3) Russell, P.J., "iGenetics- A Molecular Approach", Third Edition, Pearson International Edition
- 4) Snustad & Simmons, "Principles of Genetics", Third Edition, John Wiley & Sons Inc
- 5) Watson, Gilman, Witkowski, Zoller, "Recombinant DNA", Second Edition, Scientific American Books
- 6) Pierce, B.A, "Genetics- A Conceptual Approach", Second Edition, W.H. Freeman & Co

Course Code: RPSBCH204

Course Title: Instrumentation and Analytical Techniques II

Academic year 2020-21

COURSE OUTCOMES:

After completion of the course, a student will be able to achieve these outcomes

COURSE	DESCRIPTION
OUTCOME	
CO 1	Gain Knowledge about advanced instruments used in biochemical
	analysis.
CO 2	Comprehend the diagnosis of various diseases better by studying
	Instruments used in medicine.
CO 3	Acquire a sound background of latest methods used in
	biochemistry for purification of enzymes, isolation and
	characterization of proteins, nucleic acids, etc.
CO 4	Develop interest in analysis of biomolecules and this will help them
	in undertaking further research in the area of biochemistry in any
	research/industrial institution.

Course	Unit	Course/ Unit Title	Credits/
Code/		Instrumentation and Analytical Techniques II	Lectures
Unit		RPSBCH204	4 Credits
	1	Spectrophotometric techniques based on	15L
	25	molecular structure and interactions	
2.	1.1	Introduction to spectroscopic techniques for	1L
		Structural analysis	
	1.2	Principle, Instrumentation, Working & Biochemical	3L
		applications of	
N I	1.2.1	Infrared and Raman spectroscopy	
	1.2.2	Surface plasmon resonance	2L
	1.2.3	Electron paramagnetic resonance	2L
	1.2.4	Nuclear magnetic resonance	3L
	1.2.5	X-ray diffraction	2L
	1.2.6	Small-angle scattering	2L

	2	Advanced Chromatography	15L
	2.1	Gas chromatography, Principle, Working, Detectors (ECD, TCD, FID, NP)	3L
II	2.2	High performance liquid Chromatography- Principle, Working Detectors (UV, PDA, RI, conductivity,	3L
	23	Introduction to Hyphenation GC-MS and LC-MS	31
	2.5		3L
	2.4	Sample Preparation and Biochemical Applications of	31
	2.0	above mentioned Techniques	JE
	3	Special Instrumental Methods of Analysis	151
	31	Basic Principles Instrumentation working and	IUL
	0.1	applications of -	
	311	ERAP ERET ELIM	31
	312	Conductometry	11
ш	313	Potentiometry	21
	311	Selective Ion Meters	2L
	315	High Frequency Titrations	2L
	216	Polorography	2L
	3.1.0	Anada Stringing Voltemmetry	2L 2l
	3.1.7	Anode Stripping Voltammetry	2L
	3.1.0	Inetrumente used in medicine	
	4	Dringing and working of	15L
		Principle and working of	41
	4.1	Dialyser, Nebulizer, Otoscope, Bone Densitometry	4L
		Single neuron recording, patch-clamp recording	
	4.2	ECG, Defibrillator	1L
IV	4.3	Brain activity recording, lesion & stimulation of brain - PET, MRI, fMRI, CAT	3L
	4.4	Medical imaging –	2L
	4.4.1	Radiography (Projection radiographs &	
1		Fluoroscopy)	
	4.4.2	Ultrasound (medical ultrasonography),	3L
		Elastography, Tactile imaging	
Q.	4.4.3	Tomography, Echocardiography (Heart Ultrasound)	2L
Y		Practicals – RPSBCHP204	2 Credits
	1	Virtual Labs – Autoradiography, Patch Clamp	
		Techniques	
	2	Study of Electrocardiograms in healthy & diseased states	
	3	Seminar on the Principle, Working and Applications	
	4	of different instruments	

5	Instrumentation: Case studies	
6	Field visit & report writing	

- Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Principles of Instrumental Analysis by Douglas A. Skoog, F. James Holler, Stanley R. Crouch
- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- 6. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath Himalaya Publ. House.
- 7. Medical Biochemistry by Ramakrishnan (2012)
- 8. TextBook of Medical Physiology Guyton Prism Books Pvt. Ltd. Bangalore

Modality of Assessment (SEMESTER II)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Model making/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination:

Duration - These examinations shall be of 02 ½ HOURS duration.
 Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 1 out of 2	03	
Q1. B	Any 2 out of 3	06	
Q2. A	Any 1 out of 2	03	
Q2. B	Any 2 out of 3	06	
Q3. A	Any 1 out of 2	03	
Q3. B	Any 2 out of 3	06	
Q4. A	Any 1 out of 2	03	
Q4. B	Any 2 out of 3	06	
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Particulars	Practical I, II, III & IV
Journal	05
Experimental tasks	15
Total	20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I, II, III & IV	
Laboratory work	25	
Viva	5	
Total	30	
		$\sim 0^{\vee}$

Overall Examination & Marks Distribution Pattern

Semester II

Course	201		201 202				Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

InternalExternalTotalInternalExternalTotalTheory40601004060100200Practicals203050203050100	Course	2	03		2	04		Grand Total
Theory 40 60 100 40 60 100 200 Practicals 20 30 50 20 30 50 100		Internal	External	Total	Internal	External	Total	
Practicals 20 30 50 20 30 50 100	Theory	40	60	100	40	60	100	200
MA	Practicals	20	30	50	20	30	50	100
	AMAR							•