Resolution No. AC/II(23-24).2.RPS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: MSc

Program Code: RPSBCH

(As per the guidelines of National Education Policy 2020-

Academic year 2024-25)

GRADUATE ATTRIBUTE

S. P. Mandali's Ramnarain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelors Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Master's Degree in Science program will be able to:
GA 1	Demonstrate in depth understanding in the relevant science discipline. Recall, explain, extrapolate, and organize conceptual scientific knowledge for execution
	and application and also to evaluate its relevance.
GA 2	Critically evaluate, analyse, and comprehend a scientific problem. Think creatively, experiment and generate a solution independently, check and
	validate it and modify if necessary.
GA 3	Access, evaluate, understand, and compare digital information from various sources and apply it for scientific knowledge acquisition as well as scientific data analysis and presentation.
GA 4	Articulate scientific ideas, put forth a hypothesis, design and execute testing tools and draw relevant inferences. Communicate the research work in appropriate scientific language.
GA 5	Demonstrate initiative, competence, and tenacity at the workplace. Successfully plan and execute tasks independently as well as with team members. Effectively communicate and present complex information accurately and appropriately to different groups.
GA 6	Use an objective, unbiased and non-manipulative approach in collection and interpretation of scientific data and avoid plagiarism and violation of Intellectual Property Rights. Appreciate and be sensitive to environmental and sustainability issues and understand its scientific significance and global relevance.
GA 7	Translate academic research into innovation and creatively design scientific solutions to problems. Exemplify project plans, use management skills, and lead a team for planning and execution of a task.
GA 8	Understand cross disciplinary relevance of scientific developments and relearn and reskill so as to adapt to technological advancements.
2V	

PROGRAM OUTCOMES

РО	Description
	A student completing Master's Degree in Science program in the subject of Biochemistry will be able to:
PO 1	Acquire necessary knowledge and skills to undertake a career in research, either in industry or in an academic set up.
PO 2	Compare and contrast the breadth and depth of scientific knowledge in the broad range of fields including Protein biochemistry, Bioenergetics, Diagnostic Biochemistry, Hormonal Biochemistry, Molecular Biology, Nutritional Biochemistry, and Nanotechnology.
PO 3	Extrapolate and comprehend the regulatory role of metabolic processes and understand the underlying cause of metabolic disorders
PO 4	Acquire thorough knowledge of Biochemical Techniques, Advanced Immunology, Physiology, Genetic Engineering, and Biotechnology
PO 5	Describe and express the biochemical basis of human diseases, protein structure and conformation, non-invasive diagnostics, clinical research, and its importance in drug development. Usage of this knowledge further for multitude of laboratory applications.
PO 6	Integrate and apply the techniques in Biophysics, Analytical Biochemistry, Clinical biochemistry, Microbiology, Molecular Biology and Basics in Bioinformatics
PO 7	Gain proficiency in laboratory techniques in both Biochemistry and Molecular Biology, and be able to apply the scientific method to the processes of experimentation and Hypothesis testing
PO 8	Develop and enhance skills & improve employability through academic, research and internship opportunities
PO 9	Gain exposure to basic research through the provision of PG research based project.
PO 10	Learn to work as a team as well as independently to compile and interpret Biological data, carry out Research investigations and draw conclusions
24.	

14 (3+1)*3+2					
	4(3+1)	4	0	0	22
14 (3+1)*3+2	4(3+1)	0	4 FP	0	22
12 (3+1)*3	4(3+1)	0	0	6 RP	22
8 (3+1)*2	4(3+1)	0		10 OJT	22
S 48	16	4	4	16	88
RAMP	JIAA	5	540		
	12 (3+1)*3 8 (3+1)*2 S 48	12 (3+1)*3 4(3+1) 8 (3+1)*2 4(3+1) TS 48 16	12 (3+1)*3 4(3+1) 0 8 (3+1)*2 4(3+1) 0 rs 48 16 4	12 (3+1)*3 4(3+1) 0 0 8 (3+1)*2 4(3+1) 0 5 48 16 4 4	12 (3+1)*3 4(3+1) 0 0 6 RP 8 (3+1)*2 4(3+1) 0 10 OJT 'S 48 16 4 4 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S 'S S 'S

CREDIT STRUCTURE FOR MSc

PROGRAM OUTLINE

YEAR	SEM	CORE COURSE	Type of	COURSE TITLE	CREDITS		
			Course				
		RPSBCHO601	DSC I	Advanced Metabolism	3		
		RPSBCHPO601	Practical DSC I	Practicals based on Major Theory	1		
		RPSBCHO602	DSC II	Eukaryotic Molecular Biology	3		
	111	RPSBCHPO602	Practical DSC II	Practicals based on Major Theory	1		
		RPSBCHO603	DSC III	Advanced Endocrinology	3		
		RPSBCHPO603	Practical DSC III	Practicals based on Major Theory	1		
		RPSBCHO604	DSE	Plant Biochemistry	3		
		RPSBCHPO604	Practical DSE	Practicals based on Theory	1		
			X	Dissertation	6		
MSCII		RPSBCHE611	DSCI	Developmental Biology, Cancer & Immuno- deficiencies	3		
		RPSBCHPE611	Practical DSC I	Practicals based on Major Theory	1		
	IV			RPSBCHE612	DSC II	Advanced Immunology	3
		RPSBCHPE612	Practical DSC II	Practicals based on Major Theory	1		
		RPSBCHE613	DSE	Pathophysiology of Diseases & Clinical Research	3		
	2A'	RPSBCHPE613	Practical DSE	Practicals based on Major Theory	1		
				Internship	10		

Course Code DSC I: RPSBCHO601

Course Title: Advanced Metabolism Academic year 2024-25

COURSE OUTCOMES:

OUTCOME A student completing this course will be able to: CO 1 Understand the major catabolic and anabolic pathways in metabolism of carbohydrates, lipids, amino acids and nucleotides. CO 2 Describe regulatory mechanisms that control the metabolic pathways. CO 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	OUTCOME CO 1 CO 2 CO 3 CO 4 CO 5 CO 6	A student completing this course will be able to: Understand the major catabolic and anabolic pathways in metabolism of carbohydrates, lipids, amino acids and nucleotides. Describe regulatory mechanisms that control the metabolic pathways. Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
C0 1 Understand the major catabolic and anabolic pathways in metabolism of carbohydrates, lipids, amino acids and nucleotides. C0 2 Describe regulatory mechanisms that control the metabolic pathways. C0 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. C0 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. C0 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. C0 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 1 CO 2 CO 3 CO 4 CO 5 CO 6	Understand the major catabolic and anabolic pathways in metabolism of carbohydrates, lipids, amino acids and nucleotides. Describe regulatory mechanisms that control the metabolic pathways. Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
metabolism of carbohydrates, lipids, amino acids and nucleotides. CO 2 Describe regulatory mechanisms that control the metabolic pathways. CO 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 2 CO 3 CO 4 CO 5 CO 6	metabolism of carbohydrates, lipids, amino acids and nucleotides. Describe regulatory mechanisms that control the metabolic pathways. Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
CO 2 Describe regulatory mechanisms that control the metabolic pathways. CO 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 2 CO 3 CO 4 CO 5 CO 6	Describe regulatory mechanisms that control the metabolic pathways. Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
pathways. CO 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 3 CO 4 CO 5 CO 6	pathways. Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
CO 3 Realize the Influence of Diet and hormonal signalling on metabolic pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 3 CO 4 CO 5 CO 6	Realize the Influence of Diet and hormonal signalling on metabolic pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
pathways. CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 4 CO 5 CO 6	pathways. Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
CO 4 Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 4 CO 5 CO 6	Learn Biochemical functions and integrated metabolism of in brain, digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
digestive system, liver, red cell, muscle and adipocyte. CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 5 CO 6	digestive system, liver, red cell, muscle and adipocyte. Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
CO 5 Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 5 CO 6	Illustrate the molecular mechanisms underlying major inherited diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
diseases of metabolism. CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 6	diseases of metabolism. Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
CO 6 Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.	CO 6	Understand the relationship between the properties of macromolecules and cellular activities, cell metabolism and chemical composition.
macromolecules and cellular activities, cell metabolism and chemical composition.		macromolecules and cellular activities, cell metabolism and chemical composition.
chemical composition.		chemical composition.
AMMARAMARUIA	L	
AMARY		AMPUN
	MAR	
	P	

Course	Unit	Course/ Unit Title	Credits/
Code		Advanced Metabolism	Hours
		RPSBCHO601	3 / 45 Hours
	1	Carbohydrate Metabolism	15
	1.1	Gluconeogenesis: Pathway and its Regulation	
	1.2	Glycogen Metabolism: Synthesis, breakdown,	
		mechanisms of control of glycogen metabolism -	
		Direct Allosteric Control of Glycogen Phosphorylase	
		and Glycogen Synthase, Covalent Modification of	
		Enzymes by Cyclic Cascades, Hormonal regulation,	
		Maintenance of Blood Glucose Levels	
	1.3	Futile cycle, Rapoport Luebering cycle, Cori cycle,	
I		Glucose-Alanine cycle & their significance	
	1.4	Shuttles-Malate-Aspartate shuttle & Glycerol	
		phosphate shuttle	
	1.5	Uronic acid pathway (biosynthesis, degradation &	
		its significance),	
		Galactose and fructose metabolism; Sorbitol	
		pathway	
	1.6	Biosynthesis of oligosaccharides and glycoproteins,	
		Synthesis of Blood Group Antigens	
	1.7	Regulated synthesis of starch and sucrose	
	2	Amino acid metabolism	15
	2.1	Metabolism of individual amino acids	
		Glycine, Phenylalanine, Tyrosine, Tryptophan,	
		Glutamate	
	2.2	Metabolism of sulphur containing amino acids	
	2.3	Metabolism of branched-chain amino acid	
PANNA PANNA	2.4	Glucogenic and ketogenic amino acids.	
	2.5	Biosynthesis of amino acids	
		Overview of amino acid synthesis. Biosynthesis of	
		non-essential amino acids and its regulation	
	2.6	Precursor functions of amino acids	
	2.7	Biosynthesis of creatine and creatinine, polyamines	
		(putresine, spermine, spermidine), catecnolamines	
		(dopanine, epinepinne, norepinepinne) and	
	2	Linid motabolism	15
	3	Cupruling of B oxidation pathway	10
III	3.1 310	Green and and and and and and and and and an	
	J.I.Z	p-oxidation of unsaturated, odd and even numbered	
		and branched chain fatty acids, regulation of fatty	

	acid oxidation, peroxisomal β -oxidation, ω	
	oxidation, ketone bodies metabolism, ketoacidosis	
3.2	Fatty acid synthesis	
3.2.1	Transport of mitochondrial Acetyl Co A to cytosol,	
	Fatty acid synthase complex, Synthesis of	
	saturated, unsaturated, odd and even chain fatty	
	acids and regulation.	
3.2.2	Biosynthesis of eicosanoids, cholesterol, steroids	
	and isoprenoids	\sim
3.2.3	Synthesis of prostagladins, leukotrienes and	
	thromboxanes. Synthesis of cholesterol, regulation	
	of cholesterol synthesis. Synthesis of steroids and	
	isoprenoids.	
3.2.4	Biosynthesis of glycerophospholipids and	
	sphingolipids	

	Course code- RPSBCHPO601	1 Credit
	Practical Title- Practical I	
1)	Estimation of glucose by the GOD-POD method	
2)	Affinity studies of Glucokinase & Hexokinase	
3)	Effect of physical status (active vs sedentary) on glucose	
	metabolism	
4)	Estimation of Amino Acids by Ninhydrin Method	
5)	Determination of activity of urease	
6)	Estimation of ammonia in the excreta of ammonotelic	
	organisms	
7)	Estimation of unsaturated fatty acids	

References:

- 1. Biochemistry U. Sathyanarayana Books and Allied (P) Ltd. Kolkata.
- 2. Biochemistry Voet, D. and Voet, J.G. John Wiley & Sons, Inc. USA.
- 3. Biochemistry by L. Stryer W.H. Freeman Press, San Francisco, USA.
- 4. Outlines of Biochemistry E.E. Conn and P.K. Stumpf Wiley Eastern, New Delhi.
- 5. Text book of Biochemistry J.L Jain
- 6. Text Book of Biochemistry D.M. Vasudevan
- 7. Text Book of Biochemistry A.C. Deb, 9th revised edition (2017)
- 8. Biochemistry Garret, R.H. and Grisham, C.M. (2005) Thomson Learning INC.
- 9. Biochemical methods S Sadashivam and A Manickam New Age International publishers
- 10. Laboratory Manual in Biochemistry J. Jayaraman New Age International
- 11. An Introduction to Practical Biochemistry Plummer David

Course Code DSC II: RPSBCHO602

Course Title: Molecular Biology II

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION
OUTCOME	A student completing this course will be able to:
CO 1	Define the molecular events of DNA Replication, transcription, and translation process
CO 2	Enlist different types of repair mechanisms and explain their
CO 3	Outline the principle of gene organization and the roles of promoters, coding, and termination sequences
CO 4	Compare and state differences in the transcription process occurring in prokaryotes and eukaryotes
CO 5	Discuss how gene expression is regulated at the post-transcriptional level
CO 6	Analyse the tools and techniques for construction of recombinant DNA, cloning vectors & genomic and cDNA library
CO 7	Recall the applications of RDT in various field
CO 8	Make use of theoretical concepts of molecular biology and develop
	experimental acumen.
anna	RAMPUIAT

Course	Unit	Course/ Unit Title	Credits/
Code		Molecular Biology II	Hours
		RPSBCHO602	3 / 45 Hours
	1	Central Dogma of Eukaryotes	15
		DNA Replication in eukaryotes	
	1.1.	Features of eukaryotic chromosome, Eukaryotic	
		DNA polymerases	
	1.2.1	Proteins and accessory molecules essential in the	
		initiation, and elongation steps	
	1.2.2	Mechanism (Pre-RC assembly, Initiation,	
		elongation & termination)	
	1.3	Concept of Okazaki fragment maturation, long &	
		short flap processing, Stalled replication fork, End	
		replication problem and role of telomerases	
		Transcription in eukaryotes	
	1.4	Role of promoter & regulatory elements, Eukaryotic	
I		RNA polymerases	
	1.5	Mechanism of RNA transcription in eukaryotes -	
		Formation of pre-initiation complex, initiation,	
		elongation and termination, Phosphorylation of	
		RNAPII	
	1.6	mRNA splicing, Processing of tRNA, Base	
		modifications in tRNA, Eukaryotic rRNA processing	
		(arrangement of eukaryotic rDNA), Role of snoRNA	
		Translation in eukaryotes	
	1.7	Mechanism of eukaryotic translation: Initiation,	
		elongation & termination	
	1.8.1	Signal hypothesis	
	1.8.2	Role of signal peptide & its role in Protein sorting,	
		Protein localization in Nucleus	45
	2	Gene Regulation in prokaryotes & eukaryotes	15
	2.1	Gene regulation in prokaryotes	
0.5	2.1.1	Principles of gene regulation, Constitutive &	
	0.1.0	Inducible genes, one cistron-one subunit concept	
	2.1.2	Negative and positive regulation	
11	2.2	Concept of operons, regulatory proteins, activators,	
	0.0	repressors, DNA binding domains, allosteric site	
	2.3	Lac, Hyptophan and Arabinose operon – Structure,	
		Positive control of los operan	
	2.4		
	2.4	Gene regulation in Eukaryotes	

	2.4.1	Role of regulatory transcription factors in eukaryotic	
		gene regulation-general TF and Regulatory TF,	
		TFIID and Mediator	
	2.4.2	Regulation of galactose metabolism in yeast	
	2.4.3	Regulatory RNAs in eukaryotes: synthesis and	
		mechanism of siRNA and miRNA	
	3	Genetic Mapping	15
	3.1	Genetic Transfer and Mapping In Bacteria	
	3.1.1	Use of conjugation to map the order of genes along	
		the E. coli chromosome	
	3.1.2	Cotransduction can be used to map genes that are	
		within 2 minutes of each other	
	3.2	Intragenic mapping in Bacteriophages	
ш	3.3	Genetic linkage, Genetic recombinations: Holliday models	
	3.4	Genetic mapping in plants & animals, Frequency of recombination, Map distance	
	3.5.1	Trihybrid Crosses Can Be Used to Determine the	
		Order and Distance Between Linked Genes	
	3.5.2	Gene mapping – Genome mapping (genetic	
		mapping, Physical mapping)	
	3.6	Tetrad analysis	
		Problems based on above concept	
	3.7	Mitotic Recombination	

		Course code- RPSBCHPO602	1 Credit
		Practical Title- Practical II	
	1)	Isolation of histones from yeast cells	
	2)	Study of inhibitors on protein synthesis by yeast cells	
	3)	Determination of gene order and construction of a gene	
		map (dihybrid & trihybrid cross)	
	4)	Compute gene distance for the given sequence	
	5)	Chi-square analysis to distinguish between linkage and	
		independent assortment	
	6)	Ordered & Unordered Tetrad analysis	
\bigcirc	7)	Use of conjugation to map the order of genes	
	8)	β -galactosidase Activity Assay in Permeabilized Yeast	

References:

- 1. Genetics Analysis and Principles by Robert J. Brooker
- 2. Molecular Biology of Cell: Bruce Alberts, 4th Edition, Garland Science
- 3. Tropp, B.E. Molecular Biology. Genes to Proteins.2011 (4th Ed.) Jones and Bartlett publications.
- 4. Freifelder, D. Essential of Molecular Biology, 1998 (3rd Ed.)

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2024-2025

- 5. Lewin, B. Gene X, Jones & Bartlett, 2009
- 6. Molecular Cell Biology by James Dernell, Harvey Lodish and David Baltimore, W.H. Freeman & Co., 2007 (6th Ed.).
- 7. From Genes to Genomes by Bale J.W. & Schantz M. V. (2003).
- 8. Gene Biotechnology by Jogdand

RAMMARMARUAAUONONOUSCOLLEGE

Course Code DSC III: RPSBCHO603

Course Title: Advanced Endocrinology

Academic year 2024-25

COURSE OUTCOMES:

A student completing this course will be able to: Study the historical experiments that lead to the discovery of various hormones Deeply understand the communication between the nervous system and the endocrine system Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Study the historical experiments that lead to the discovery of various hormones Deeply understand the communication between the nervous system and the endocrine system Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
various hormones Deeply understand the communication between the nervous system and the endocrine system Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Deeply understand the communication between the nervous system and the endocrine system Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
System and the endocrine system Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Learn the structure, functions and the disorders associated with the various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Various hormones starting from the pituitary hormones to the gonadal hormones. Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
gonadal normones.Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause.Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception.Present a case study on a hormonal and a metabolic disorder
Appreciate and analyze the endocrine regulation of the various metabolisms such as carbohydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
metabolisms such as carbonydrate metabolism, Protein metabolism, calcium homeostasis, menstrual cycle, pregnancy and menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Menopause. Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Apply the knowledge of hormones in assay of hormones such as T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
T3, T4 and TSH and understand the strategy behind contraception. Present a case study on a hormonal and a metabolic disorder
Present a case study on a hormonal and a metabolic disorder
AMRUIT

Course	Unit	Course/ Unit Title	Credits/
Code	Code Advanced Endocrinology		Hours
		RPSBCHO603	3 / 45 Hours
	1	Hormones regulating Metabolism,	15
		Calcium homeostasis and Growth	
	1.1.1	Thyroid gland- Histology	
	1.1.2	Biosynthesis of thyroid hormone and its regulation:	
		Role of TRH and TSH in T4 synthesis and	
		response	
	1.1.3	Physiological and biochemical action of Thyroxine) `
	1.1.4	Pathophysiology of thyroxine secretion: Hyper and	
		hypothyroidism, Goitre, Graves' disease, Cretinism,	
	1 2 1	Myxoedema	
I	1.2.1	and calcitonin	
	1.2.2	Mechanism of Ca2+ regulation and pathways	
	4.0.0	involving bone, skin, liver, gut and kidneys	
	1.2.3	Pathophysiology - rickets, osteomalacia,	
	1 2	Population of Crowth: growth hormono and	
	1.5	somatomedin	
	1.4	Endocrine disorders - gigantism, acromegaly,	
		dwarfism, pygmies	
	1.5	Physiology and biochemical actions of Growth	
		factors- EGF, PDGF and EPO	
	2	Hypothalamic- hypophysial system &	15
	2	Hormones of the adrenals	
	2.1	Hypothalamic - Pituitary axis: anatomy, histology,	
		vasculature and secretions	
	2.2.1	Physiological and biochemical actions of	
		hypothalamic hormones and Anterior pituitary	
	222	hormones	-
	2.2.2	Posterior pituitary bormones -structure, physiology	
	2.3.1	Biochemical actions of AVP and Oxytocin: Diabetes	
	2.0.2	insipidus	
	2.4	Histology of Adrenal Gland	
	2.5	Physiology and action of Aldosterone; the Renin	
		Angiotensin System	
	2.6.1	Physiology and Biochemical actions of Cortisol	

	2.6.2	Regulation of cortisol synthesis: POMC and CRH	
	2.7.1	Adrenal medullary Hormones: Epinephrine and	
		Norepinephrine	
	2.7.2	The Fight or flight response; Dual receptor	
		hypothesis	
	2.8	General adaptation syndrome: acute and chronic	
		stress response	
	2.9	Pathophysiology – Addison's disease, Conn's	
		syndrome, Cushing syndrome.	C V
	3	Pancreatic, GI tract and Reproductive	15
		hormones	
	3.1	Cells involved in release of gastrointestinal	
		hormones	
	3.1.1	Gastrin family of hormones	
	3.1.2	CCK: the secretin family of hormones	
	3.1.3	Incretins; Ghrelin	
	3.2	Summary of hormone metabolite control of GI	
		function	
	3.3	Hormones of the Pancreas: Structure, synthesis,	
		physiology and biochemical actions of insulin and	
ш		glucagon	
	3.4	Adipocyte hormones: Adiponectin and leptin;	
		Appetite and satiety control	
	3.5	Pathophysiology Type I and type II Diabetes	
		mellitus, Obesity and Metabolic syndrome	
	3.6	Male and female sex hormones	
	3.6.1	Interplay of hormones during ovarian and uterine	
		phases of menstrual cycle	
	3.6.2	Placental hormones; role of hormones during	
		parturition and lactation	
	3.6.3	Hormone based contraception	
	3.6.4	Concept - ammenorrhea, menorrhagia, PMS,	
		PCOS, Menopause	

	Course code- RPSBCHPO603	1 Credit
	Practical Title- Practical III	
1)	Estimation of serum electrolytes	
2)	Estimation of serum Calcium by colorimetric method	
3)	Study of human menstrual cycle	
4)	Case study on Diabetes mellitus, obesity & metabolic	
	syndrome	

5)	Case study on hormonal changes in males & Females	
6)	Visit to a Pathology lab & Report Writing	

References

- Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Freeman & Company (NewYork), ISBN:13: 978-1-4641-0962-1 / ISBN:10-14641-0962-1.
- 2. Vander's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. McGraw Hill International Publications, ISBN: 978-0-07-128366-3.
- 3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc. ISBN: 978-81-317-2610-5.
- 4. Guyton and Hall Textbook of Medical Physiology 13th Edition by John E. Hall, Elsevier
- 5. Harrison's Endocrinology, Second Edition by J. Larry Jameson
- 6. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ia in intersection of the section of ASM Press & Sunderland, (Washington DC), Sinauer Associates. (MA). ISBN:978-0-87893-300-6.

Modality of Assessment: Semester III

Disciple Specific Course

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of Two hours duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 4	15	UNIT I
Q2.	Any 3 out of 4	15	UNIT II
Q3.	Any 3 out of 4	15	UNIT III
	TOTAL	45	

Semester End Practical Examination:

Practical Examination Pattern:

		Particulars	Marks
	1	Laboratory work	40
7.	2	Viva	05
24	3	Journal	05
		TOTAL	50

Course Code DSC I: RPSBCHE611

Course Title: Developmental Biology, Cancer & Immuno-deficiencies

Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:
CO 1	understanding of the concepts of early animal development
CO 2	develop a critical appreciation of methodologies specifically used to study the process of embryonic development in animals.
CO 3	Comprehend the basics of cancer and identify with the concept of cancer as a disease and the process of carcinogenesis
CO 4	Perform the basic and the advanced molecular techniques used in cancer diagnostics and interpret the results
CO 5	Make objective decisions about the harmful effects of cancer causing agents and create awareness about them among the common man
CO 6	Recognize clinical signs and symptoms that would warrant a work-up for a primary immunodeficiency disorder
CO 7	Select the laboratory work-up required to diagnose the more common immunodeficiency disorders
CO 8	Describe the treatment options for patients with primary immunodeficiency disorders including immunoglobulin replacement

RAMMARAM

Course	Unit	Course/ Unit Title	Credits/
Code		Developmental Biology, Cancer & Immuno-	Hours
		deficiencies	3 / 45 Hours
		RPSBCHE611	
	1	Developmental Biology	15
	1.1	Basic concepts of development : Potency,	
		commitment, specification, induction, competence,	
		determination and differentiation	
	1.2	Morphogenetic gradients; cell fate and cell	
		lineages; genomic equivalence and the cytoplasmic	
		determinants	
I	1.3	Gametogenesis, fertilization (in humans & sea	
		urchin)	
	1.4	Early development, cell surface molecules in	
		sperm-egg recognition in animals	
	1.5	Embryonic cleavage	
	1.6	Formation of germ layers in animals	
	1.7	Sexual reproduction in plants - Gametogenesis,	
		double fertilization in plants	
	2	Cancer	
	2.1	Genetic basis of cancer	
	2.2	Experimental evidenced for transformation of cell	
	2.3	Oncogenes	
	2.3.1	Identification of chromosomal oncogene	
	2.3.2	Gain of function mutation	
	2.3.3	Conversion of proto-oncogene to oncogene	
	2.3.4	Missense mutation, Gene amplification,	
		chromosomal translocation, viral integration	
	2.4	Tumor suppressor gene- Role of p53 and RB gene	
	2.5	Assays – Trypan blue exclusion method, MTT	
	2.6	assay, Soft Agar Colony Formation Assay	
	2.6	Molecular profiling for classification of cancer,	
	2.7	DNA microarray	
$\langle \mathcal{L} \rangle$	2.8.1	(purine & purimiding applied). Demothylating agenta	
	202	(pullie & pyllilidile analog), Demethylating agents	
	2.0.2		15
	31	Introduction	15
	32	Primary Immuno-deficiencies	•
	321	Immunodeficiencies of the Lymphoid Lineage –	•
	0.2.1	SCID, WAS, IFN- v receptor defect. XI A, XHM, CVI	
	3.2.1	Immunodeficiencies of the Lymphoid Lineage – SCID, WAS, IFN- γ receptor defect, XLA, XHM, CVI	

3.2.2	Immunodeficiencies of the Myeloid Lineage –	
	reduction in neutrophil count, CGD, Chediak-	
	Higashi Syndrome, LAD	
3.2.3	Immunodeficiencies & Complement defects	
3.3	Secondary Immuno-deficiencies - AIDS	
3.3.1	Structure & Genetic basis of HIV, Mode of	
	transmission,	
3.3.2	Immunologic abnormalities associated with HIV	
	infection	C A
3.4	Treatment of Immuno-deficiencies	

	S	
	PRACTICAL	
	Course code- RPSBCHPE611	1 Credit
	Practical Title- Practical I	
1)	Study of developmental stages of human foetus	
2)	Types of cleavage in different organisms	
3)	Visualization of cells by methylene blue	
4)	Visualization of cells by Trypan blue	
5)	Study of viability of cells using Neutral Red Assay	
6)	Experimental Models of Immunodeficiency - Nude mice,	
	Scid Mouse	
7)	HIV Test Kit	

References

- 1) Developmental Biology by Barresi –Gilbert
- 2) Guyton and Hall Textbook of Medical Physiology 13th Edition by John E. Hall, Elsevier
- 3) Kuby Immunology (2007) 6th ed., Kindt, T.L., Goldsby, R.A. and Osborne, B.A., W.H. Freeman and Company (New York), ISBN:13: 978-0-7167-8590-3 / ISBN: 10:0-7617-8590-0.
- 4) Immunology by Rao C Vaman

Course Code DSC II: RPSBCHE612

Course Title: Advanced Immunology

Academic year 2024-25

COURSE OUTCOMES:

OUTCOME	DESCRIPTION		
	A student completing this course will be able to:		
CO 1	Learn the fundamental principles of immune response including		
	molecular, biochemical and cellular basis of immune homeostasis		
CO 2	Develop various aspects of immunological response and how its		
	triggered and regulated		
CO 3	Explain the specific interactions of Antigens and antibodies and the		
	diversity of antibodies developed at the germ line DNA		
CO 4	Complete knowledge of the molecular mechanisms and kinetics of		
	the immune responses, both humoral and cell mediated immunity		
CO 5	Enhance the knowledge of various immune-techniques ranging		
	from precipitation and agglutination reactions to ELISA, Radio		
	immunoassay and flow cytometry.		
CO 6	6 The course will aid in understanding the principles of Graft		
	rejection, Auto immunity and Antibody based therapy.		
MMARAMARUIAN			
AMMAR	AMRUAR		

Course	Course Unit Course/ Unit Title		Credits/
Code		Advanced Immunology	Hours
		RPSBCHE612	3 / 45 Hours
	1	MHC, Antigen processing and	15
		presentation & TCR	
	1.1	Major histocompatibility complex	
	1.1.1	MHC polymorphism & organization of MHC genes-	
		class I & class II	
	1.1.2	Cellular distribution & structure of class I & II	
		molecules)`
	1.1.3	MHC and immune responsiveness – Determinant-	
		selection model and Holes-in-the-repertoire model	
	1.1.4	MHC and disease susceptibility (Hereditary	
I		haemochromatosis)	
	1.2	Antigen processing and presentation	
	1.2.1	Self MHC restriction of T cells	
	1.2.2	Cytosolic and endocytic pathway	
	1.2.3	Presentation of non-peptide antigens	
	1.3 T-cell Receptor		
	1.3.1 Structure, organization & rearrangement of TCR		
	100		
	1.3.2	TCR receptor complex TCR – CD3	
	1.3.3	Torner TOD certicle MUC complex	
	1.3.4	Description of the sector	45
	2	B- and 1-lymphocytes	15
	2.1	T-cell Maturation	-
	2.2	Inymic selection of 1-cell repertoire – Positive and	
		negative selection, central issues in thymic	
	2.2		-
	2.3		
	2.4		
6-A.	2.5		
	2.0	B-cell maturation	
	2.7	B-cell activation and proliferation – Thymus	
	2.0	dependent and Thymus independent	
	29	Formation of T-B conjugates	
	3	Cytokines & Immune response in health	15
		& diseases	
	2.4	Lumoral and coll modiated immune responses	
	J.I	numoral and cell mediated immune response	

3.1.1	Cytokines - Introduction, Properties	
3.1.2	Cytokine receptors	
3.1.3	Biological functions of cytokines	
3.1.4	Therapies based on Cytokines	
3.2	Hypersensitivity reactions	
3.2.1	Gel & Coomb's classification - types of	
	hypersensitivity reactions	
3.3	Transplantation immunology	
3.3.1	Types of transplant; immunological basis of	
	allograft rejection.	
3.4	Autoimmunity	
3.4.1	Organ specific – Myasthenia gravis; Hashimotos	
	thyroiditis; Graves' Disease; Systemic –)
	Rheumatoid arthritis, Systemic lupus	
	erythematosus	
	3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.3 3.3.1 3.4 3.4.1	 3.1.1 Cytokines - Introduction, Properties 3.1.2 Cytokine receptors 3.1.3 Biological functions of cytokines 3.1.4 Therapies based on Cytokines 3.2 Hypersensitivity reactions 3.2.1 Gel & Coomb's classification - types of hypersensitivity reactions 3.3 Transplantation immunology 3.3.1 Types of transplant; immunological basis of allograft rejection. 3.4 Autoimmunity 3.4.1 Organ specific –Myasthenia gravis; Hashimotos thyroiditis; Graves' Disease; Systemic – Rheumatoid arthritis, Systemic lupus erythematosus

	Course code- RPSBCHPE612	1 Credit
	Practical Title- Practical II	
1)	Preparation of blood smear and Differential leucocyte	
	count.	
2)	Separation of lymphocytes by Ficoll Hypaque method	
3)	Lymphocyte viability testing by trypan blue	
4)	Assays based on precipitation reactions - Ouchterlony	
	double immunodiffusion (DID) and Mancini radial	
	immunodiffusion (SRID).	
5)	Assays based on agglutination reactions - Blood typing	
	(active) & passive agglutination (C reactive protein kit &	
	virtual lab).	
6)	Estimation of Rheumatoid factor	
7)	Demonstration of Enzyme linked immunosorbent assay	
	(ELISA) & DOT ELISA	
8)	Separation of serum proteins by PAGE	
9)	Virtual Lab to study immunological Techniques	

References-

- Principles and Techniques of Biochemistry and Molecular Biology (2010) 7th ed., Wilson, K., and Walker, J. (eds), Cambridge University Press (New Delhi)
- 2. Physical Biochemistry: Principles and Applications (2010) 2nd ed., Sheehan, D., Wiley Blackwell (West Sussex)
- 3. Analytical Biochemistry by David Holme and Hazel Peck

- 4. Introduction to Instrumentation in Life Sciences (2012) Bisen, P.S. and Sharma, A., CRC Press/Taylor and Francis Group (California), ISBN:978-1-4665-1240-
- 5. Biophysical Chemistry (2013), Schimmel, C.R.C., Macmillan Higher Education
- 6. Biophysical Chemistry, Principles & Techniques Upadhyay, Upadhyay and Nath -Himalaya Publ. House.
- 7. Chromatography G. Abbott
- 8. Biochemical methods, S Sadashivam and A Manickam, new age international publishers
- 9. J. Jayaraman, Laboratory Manual in Biochemistry, 2003, New Age International

.te

Disciple Specific Course

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **Two hours** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 4	15	UNIT I
Q2.	Any 3 out of 4	15	UNIT II
Q3.	Any 3 out of 4	15	UNIT III
	TOTAL	45	

Semester End Practical Examination:

Practical Examination Pattern:

	7,	Particulars	Marks
	1	Laboratory work	40
7	2	Viva	05
	3	Journal	05
		TOTAL	50