Resolution No. AC/II(23-24).2.RUS2

S. P. Mandali's

Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: F.Y.B.Sc.

Program Code: RUSBCH

(As per the guidelines of National Education Policy 2020-

Academic year 2024-25)

(Choice Based Credit System)

GRADUATE ATTRIBUTES

S.P. Mandali's Ramnrain Ruia Autonomous College has adopted the Outcome Based Education model to make its science graduates globally competent and capable of advancing in their careers. The Bachelor's Program in Science also encourages students to reflect on the broader purpose of their education.

GA	GA Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
GA 1	Recall and explain acquired scientific knowledge in a comprehensive
	manner and apply the skills acquired in their chosen discipline.
	Interpret scientific ideas and relate its interconnectedness to various
	fields in science.
GA 2	Evaluate scientific ideas critically, analyse problems, explore options
	for practical demonstrations, illustrate work plans and execute them,
	organise data and draw inferences.
GA 3	Explore and evaluate digital information and use it for knowledge
	upgradation. Apply relevant information so gathered for analysis and
	communication using appropriate digital tools.
GA 4	Ask relevant questions, understand scientific relevance, hypothesize
	a scientific problem, construct and execute a project plan and analyse
	results.
GA 5	Take complex challenges, work responsibly and independently, as
	well as in cohesion with a team for completion of a task. Communicate
	effectively, convincingly and in an articulate manner.
GA 6	Apply scientific information with sensitivity to values of different
	cultural groups. Disseminate scientific knowledge effectively for
	upliftment of the society.
GA 7	Follow ethical practices at workplace and be unbiased and critical in
	interpretation of scientific data. Understand the environmental issues
	and explore sustainable solutions for it.

GA 8	Keep abreast with current scientific developments in the specific			
	discipline and adapt to technological advancements for better			
	application of scientific knowledge as a lifelong learner			

PROGRAM OUTCOMES

РО	Description			
	A student completing Bachelor's Degree in SCIENCE program in			
	the subject of BIOCHEMISTRY will be able to:			
PO 1	Achieve better understanding of the major thrust areas of the			
	disciplines like Chemistry of Biomolecules & their metabolism, Cell			
	biology (Basics, Membrane biochemistry, Cancer), Enzymology,			
	Genetics, Plant Biochemistry, Pharmacology, Microbiology &			
	Immunology.			
PO 2	Gain acumen of the fundamental biochemical processes occurring at			
	the molecular and gene level.			
PO 3	Understand the role of Biochemistry in food and human nutrition			
PO 4	Get insights into multiple important analytical tools for Biochemical			
	testing and apply contextual knowledge and tools of biochemical			
	research for problems solving.			
PO 5	Acquire and empower technical knowledge by connecting disciplinary			
	and interdisciplinary aspects of biochemistry.			
PO 6	Compile and interpret Biological data using Biostatistics and			
	Bioinformatics tools.			
PO 7	Express ideas persuasively through scientific writing and oral			
	presentation which will help in the development of the leadership			
	qualities.			
PO 8	Possess scientific temperament by research project-based learning.			
PO 9	Procure hands-on real time experience in industries.			
PO 10	Get exposure to the strong theoretical and practical understanding of			
	various dimensions of Biochemistry and take up research-oriented			
	courses in the fields of Biochemistry, Nutrition & Dietetics, Molecular			
	Biology, etc.			

Semeste	Subje	ct 1	Subias	GE/ OE course	Vocational and Skill	Ability	OJT/FP/CEPCC	Total	
r	DSC	DS E	Subjec t 2	(Across disciplines)	Enhancemen t Course (VSC) & SEC	Enhancement Course/ VEC/IKS	, RP	Credit s	
1	4		4	4 (2*2)	VSC-2 + SEC -2	AEC- 2 (CSK) + VEC- 2 (Env Sc.) + IKS-2		22	
2	4		4	4 (2*2)	VSC-2 + SEC-2	AEC-2 (CSK)+ VEC-2 (Understandin g India)	CC-2	22	
Total	8		8	8	8	10	2	44	
Exit opt	ion: awa			-		s and an additiona Major and Minor	I 4 credit Core I	NSQF	
3	Majo r 8		Minor 4	2	VSC-2	AEC-2 MIL	FP -2, CC-2	22	
4	Majo r 8		Minor 4	2	SEC-2	AEC-2 MIL	CEP-2, CC-2	22	-
Total	16		8	4	4	4	8	44	
Exit op	Exit option: award of UG Diploma in Major with 88 credits and an additional 4 credit Core NSQF course/ Internship or Continue with Major and Minor								
5	DSC 12	DS E 4	Minor 2	Ċ	VSC-2		CEP/FP-2	22	
6	DSC 12	DS E 4	Minor 2	Ś			OJT-4	22	
Total	24	8	4		2		6	44	
	Exit option: award of UG Degree in Major with 132 credits or Continue with Major for Honours/ Research								

CREDIT STRUCTURE BSc

Course Code: RUSBCH.0101

Course Title: Biomolecules

Type of course: Discipline Specific Core Course

Academic year 2024-25

COURSE OUTCOMES:

COURSE OUTCOME	DESCRIPTION A student completing this course will be able to:			
CO1	Categorize lipids, identify structure and functions of fats, phospholipids and cholesterol, and explain the structural differences between saturated, monounsaturated and polyunsaturated fatty acids with the functional implications.			
CO2	Illustrate the structures of amino acid, peptide bond formation and classes of amino acids, identify the four levels of protein structure and summarize the function for a range of proteins			
CO3	Outline the structure, biological significance of biomolecules - carbohydrates, proteins & lipids which forms the foundation of Biochemistry			
CO 4	Explain the chemistry that governs physical, chemical properties and reactions of carbohydrates, proteins and amino acids & lipids.			
CO 5				
CO 6	Categorize the structures of several monosaccharides, disaccharides and polysaccharides, and explain their functions.			
CO 7	Compare & state differences in quantitative & qualitative estimation and understanding the role and functions of biomolecules.			
CO 8	Make use of theoretical concepts of Biomolecules and develop experimental acumen			

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/
Code Biomolecules		Hours	
		RUSBCH.O101	3 / 45 Hours
	1	Carbohydrates	15
	1.1	Definition, Occurrence and functions of	
		carbohydrates	
	1.2	Classification (Monosaccharides,	
		Oligosaccharides, Polysaccharides)	
	1.3	Monosaccharides	
	1.3.1	Concept of aldoses and ketoses	
	1.3.2	Structures and significance of biologically	
		important monosaccharides: glucose, fructose,	
		galactose, mannose, and ribose.	
	1.4.1	Physical Properties:	
		Chirality: Isomerism D & L, Stereoisomerism:	
		Enantiomers and Diastereomers, Epimers and	
		Anomers, Optical Isomers, Mutarotation	
	1.4.2	Chemical reactions:	
		Oxidation to acidic sugars (Aldonic, Aldaric and	
		Uronic acids) (with respect to glucose)	
$\sim V$		Reduction to sugar alcohols (In boiling alkali,	
		Enediol formation) (with respect to glucose and	
		fructose)	
		Osazone formation (with respect to glucose and	
Ÿ		fructose) Oreinel formation (with reapest to ribase)	
	1.5	Orcinol formation (with respect to ribose) Disaccharides	
	1.5	Occurrence and structure of Maltose, Lactose and	
		Sucrose	
		Chemical reaction: Formation of glycosidic bonds	
	1.6	Polysaccharides	
	1.0	Classification based on structure, occurrence,	
		properties and biological importance	
		Composition: Homopolysaccharides and	
		Heteropolysaccharides with examples	
	2	Amino acids & Proteins	15
	2.1	Amino acid	-
	2.1.1	Structure- D & L forms of all 20 amino acids	1
II	2.1.2	Detailed classification based on: Polarity,	1
		Nutritional classification (Essential & Non-	
		essential)	

		2.2.1	Physical Properties: Zwitter ion, pl of amino acids		
			and Amino acids as ampholytes		
		2.2.2	Chemical reactions of amino acids with Ninhydrin,		
			Sanger's reagent, Edman's reagent and Dansyl		
			chloride		
		2.3	Non-standard amino acids		
		2.4	Functions of amino acids (in brief)		
		2.5	Comparative overview of D- and L-amino acids		
		2.6	Peptides and Proteins		
			ASBC- APS classification on the basis of shape,		
			Function and physical properties & solubilities		
			(Simple, conjugated & derived proteins)		
			Nutritional classification (Complete & incomplete		
			proteins)		
			Properties and colour reactions of proteins		
		2.7	Overview of Protein structure		
		2.8	A) Primary structure -Formation and		
			characterization of the peptide bond		
			B) Secondary structure -Alpha helix and beta		
			sheet		
			C)Tertiary and Quaternary structures- an		
			introduction with one example of each		
		2.9	Protein denaturation		
	\cap	3	Lipids	15	
		3.1.1	Definition and function of lipids		
		3.1.2	Classification (Simple, Complex and Derived lipids)		
		3.2	Fatty Acids and Triacylglycerols		
		3.2.1	Classification & Chemistry		
			Saturated fatty acids - classification of C2 to C20		
			(even carbon). Common and IUPAC names		
			Unsaturated fatty acids MUFA, PUFA (2,3,4 double		
			bonds)		
	111		Omega – 3, 6, 9 fatty acids		
			Triacylglycerol - simple and mixed (names and		
			structure)		-
		3.2.2	Chemical Reactions of fats		
			Saponification, Iodination, Ozonolysis, Auto-		
			oxidation, Action of heat on glycerol and choline,		
			Rancidity		
			Definition & significance - Acid number,		
			Saponification number, Iodine number, Reichert - Meissel number		
		2.2			-
		3.3	Compound Lipids		J

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2024-2025

	Functions of glycerophospholipids Phosphosphingolipids (ceramide, sphingomyelin) Glycolipids / Cerebrosides (gluco & galactocerebrosides)	
3.4	Steroids and Lipoproteins	
3.4	Steroids - Cholesterol structure and biochemical	
	significance	
	Lipoproteins – Types (Chylomicrons, VLDL, LDL and HDL) and biochemical significance	

Practical

Sr. No	Course code- RUSBCHP.0101	1 Credit
	Practical Title- Practicals based on RUSBCH.0101	
1	Qualitative tests for monosaccharides	
2	Qualitative tests for disaccharides	
3	Qualitative tests for polysaccharides	
4	Qualitative test for amino acids	
5	Qualitative test for proteins	
6	Qualitative test for lipids	
7	Determination of the acid value of a fat	
8	Determination of the saponification value of a fat	

References:

- 1. Lehninger, Albert L, Biochemistry, Kalyani Publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 6. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 7. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- Textbook of Medical Biochemistry (8th Edition) by MN Chatterjea & Rana Shinde, Jaypee publications

Modality of Assessment: Discipline Specific Core Course (3 Credit Theory Course for BSc)

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of One hour and 30 Minutes duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 5	15	UNIT I
Q2.	Any 3 out of 5	15	UNIT II
Q3.	Any 3 out of 5	15	UNIT III
	TOTAL	45	

Practical Examination Pattern: Total Marks 25

Particulars	Marks
Laboratory Work	25
Viva & Journal	05
Total	30

Semester II

Course Code: RUSBCH.E111

Course Title: Cell Biology & Physiology

Academic year 2024-25

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME	A student completing this course will be able to:		
CO 1	Define the structure and function of nucleic acid strengthening the		
	basic information of DNA and RNA, understanding nitrogenous		
	bases, their bond formation & reactions of nucleic acids.		
CO2	Illustrate the mechanism of cell to cell interaction and cell division,		
	to explain structural and functional aspects of the cells.		
CO3	Explain difference between weak and strong acids/bases,		
	recognize different ways of expressing concentrations of a solution.		
CO4	Interpret the biological significance and functions of water, acids,		
	bases and buffers.		
CO5	Summarize the role of cytoskeleton and understand its different		
	components, function and distribution.		
CO 6	Interpret the principles of pH measurement, acid-base, buffers and		
	biological buffers its properties and determination of pH using		
D Y	electrodes.		
C07	Analyse the basic concepts of genetics and transmission of genetic		
	information.		
CO8	Make use of theoretical concepts of Cell Biology & Physiology in		
	Biochemistry and develop experimental acumen		

DETAILED SYLLABUS

Course	Unit	Course/ Unit Title	Credits/	
Code Cell Biology & Physiology		Cell Biology & Physiology	Hours	
		RUSBCH.E111	3 / 45 Hours	
	1	Nucleus & its components	15	
	1.1	Overview of Nucleus, Nuclear Envelop, Nucleolous		
	1.2	Introduction to nucleic acids		
	1.2.1	Structure - Purine & Pyrimidine bases, ribose,		
		deoxyribose, nucleosides and nucleotides (ATP,		
		CTP, GTP, TTP, UTP)		
	1.2.2	Formation of phosphodiester bond and shorthand		
		representation of polynucleotide strand		
	1.3	RNAs (various types in prokaryotes and		
-		eukaryotes) mRNA, hnRNA, rRNA, snRNA &		
I		snoRNA - general account, tRNA - clover leaf		
		model, Ribozymes		
	1.4	DNA Dhuriagh guideana of DNA haliagh structure		
•	1.4.1	Physical evidence of DNA helical structure.		
		Chargaff's rules (chemical evidence), Watson-Crick	(\land)	
	1.4.2	model of DNA & its features 1.2 Physical properties of DNA - Effect of heat on		
physical properties of DNA (Viscosity, buoyant density, UV absorption), Hypochromism,				
hyperchromism, denaturation of DNA.				
	1.5	Reactions of nucleic acids (with DPA and Orcinol)		
	2	Cytoskeleton, Cell-cell interaction & Cell cycle	15	
	2.1	Introduction and Importance of Cytoskeleton		
	2.2	Types (Microtubules, Microfilaments &		
		Intermediate Filaments)		
	2.2.1	Structure, assembly and function of Microtubules:		
		Axonemal and cytoplasmic microtubules (cilia,		
		flagella, centrioles, basal bodies)		
	2.2.2	Microfilaments: Actin & Myosin, Cytoplasmic		
II		streaming		
	2.2.3	Intermediate Filaments: Anchoring cell junctions		
	2.3	Motor Proteins – Kinesins, Dyneins & Myosins		
	2.4	Cell - Cell Interaction		
	2.4.1	Cell-Cell Interactions and Cell-Matrix Interactions		
	2.2.4	Components of Extracellular Matrix: Collagen and		
		Non-Collagen Components		
	2.4.3	Tight Junctions; Gap Junctions; Chemical		
		synapses and Plasmodesmata		

	2.5	Role & Importance of Cell Interaction		
	2.6	Cell Cycle		
	2.6.1 Overview of Cell Cycle, Phases of Cell Cycle			
	2.6.2	Role of checkpoints, Regulation of cell cycle -		
		Cyclins & CDKs		
	3	Water and Acids, bases & buffers	15	
	3.1	Water		
	3.1.1	Water and its biological significance, water as a		
		universal solvent.		
	3.1.2	Hydrogen bonding and structure		
	3.1.3	Concepts of mole, molar, molar equivalent and		
		normal, Dalton		
	3.1.4	Ionization of water, weak acids and weak bases		
	3.1.5	Numericals based on the above concept		
	3.2	Acid and Bases		
	3.2.1	Definitions and Introduction of pH Scale,		
III		Measurements, Indicators, Strong and Weak		
		Electrolytes		
	3.2.2	Titration Curve of glycine		
	3.2.3	Working of pH meter and glass electrode		
	3.3	Buffers		
 3.3.1 Mechanism of Buffer Action, Buffering Capacity 3.3.2 Preparation of Buffer Solutions – Acidic and Basic 				
Expression of Hendersen–Hasselbalch equation,				
		Henderson equation of acidic and basic buffer		
		solution		
		Numericals based on the above concept		
	1			1

Practical

Sr. No	Course code- RUSBCHP.E111	1 Credit
	Practical Title- RUSBCH. E111	
1	Qualitative test for nucleic acids	
2	Smear technique to demonstrate sex chromatin in buccal epithelial cells	
3	Preparation & standardization of laboratory reagents	
4	Quantitative estimation of normality of FAS	
5	Preparation of buffers, phosphate and acetate buffers	
6	Determination of pKa of glycine	
7	Determination of the Alkalinity of water/ Effluent	
8	Determination of the Acidity of water/ Effluent	

References:

- 1. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P.S. Verma, V.K. Agarwal
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Stanier, Ingraham et al ,General Microbiology 4th & 5th Ed. 1987, Macmillan Education Ltd
- 6. Analytical Biochemistry by David Holme
- 7. Biophysical Chemistry, Avinash Upadhyay
- Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
- 9. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 10. Boyer, Rodney F., Modern experimental biochemistry
- 11. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- 12. Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston: Benjamin Cummings / Pearson, ©2011.
- 13. Bruce albert, Molecular Biology of the cell 6th edition, Taylor & Francis (Garland Science)

Modality of Assessment: Discipline Specific Core Course (3 Credit Theory Course for BSc)

A) Internal Assessment- 40%- 30 Marks

Sr No	Evaluation type	Marks
1	Class test	20
2	Class test/ Project/ Assignment/ Presentation	10
	TOTAL	30

B) External Examination- (Semester End) 60%- 45 Marks Semester End Theory Examination:

- 1. Duration These examinations shall be of **One hour and 30 Minutes** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1.	Any 3 out of 5	15	UNIT I
Q2.	Any 3 out of 5	15	UNIT II
Q3.	Any 3 out of 5	15	UNIT III
	TOTAL	45	

Practical Examination Pattern: Total Marks 25

Particulars	Marks
Laboratory Work	25
Viva & Journal	05
Total	30