Resolution No. AC/I(21-22).2(II).RUS2

S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

FYBSc

Program: BSc

Program Code: RUSBCH

(Credit Based Semester and Grading System for academic year 2022–2023)

GRADUATE ATTRIBUTE

GA	A GA Description						
	A student completing Bachelor's Degree in SCIENCE						
	program will be able to:						
GA 1 Recall and explain acquired scientific knowledge in a comprehens							
	and apply the skills acquired in their chosen discipline. Interpret scientific						
	ideas and relate its interconnectedness to various fields in science.						
GA 2 Evaluate scientific ideas critically, analyse problems, explore optio							
	practical demonstrations, illustrate work plans and execute them, organise						
	data and draw inferences.						
GA 3	Explore and evaluate digital information and use it for knowledge						
	upgradation. Apply relevant information so gathered for analysis and						
	communication using appropriate digital tools.						
GA 4	Ask relevant questions, understand scientific relevance, hypothesize a						
	scientific problem, construct and execute a project plan and analyse results.						
GA 5	Take complex challenges, work responsibly and independently, as well as in						
	cohesion with a team for completion of a task. Communicate effectively						
	convincingly and in an articulate manner.						
GA 6	Apply scientific information with sensitivity to values of different cultura						
	groups. Disseminate scientific knowledge effectively for upliftment of the						
	society.						
GA 7	Follow ethical practices at workplace and be unbiased and critical ir						
	interpretation of scientific data. Understand the environmental issues and						
	explore sustainable solutions for it.						
GA 8	Keep abreast with current scientific developments in the specific discipline						
	and adapt to technological advancements for better application of scientific						
	knowledge as a lifelong learner						

PROGRAM OUTCOMES

РО	Description					
	A student completing Bachelor's Degree in SCIENCE program					
	in the subject of BIOCHEMISTRY will be able to:					
PO 1	Achieve better understanding of the major thrust areas of the disciplines like					
	Chemistry of Biomolecules & their metabolism, Cell biology (Basics,					
	Membrane biochemistry, Cancer), Enzymology, Genetics, Plant Biochemistry,					
	Pharmacology, Microbiology & Immunology.					
PO 2	Gain acumen of the fundamental biochemical processes occurring at the					
	molecular and gene level.					
PO 3	Understand the role of Biochemistry in food, human nutrition and					
	environmental science.					
PO 4 Get insights into multiple important analytical tools for Biochemical testing an						
	apply contextual knowledge and tools of biochemical research for problems					
	solving.					
PO 5	Acquire and empower technical knowledge by connecting disciplinary and					
n Y	interdisciplinary aspects of biochemistry.					
PO-6	Compile and interpret Biological data using Biostatistics and Bioinformatics					
	tools.					
PO 7	Express ideas persuasively through scientific writing and oral presentation					
	which will help in the development of the leadership qualities.					
PO 8	Possess scientific temperament by research project-based learning.					
PO 9	Procure hands-on real time experience in industries.					
PO 10	Get exposure to the strong theoretical and practical understanding of various					
	dimensions of Biochemistry and take up research-oriented courses in the fields					
	of Biochemistry Nutrition & Dietetics Molecular Biology etc					

PROGRAM OUTLINE

YEAR	SEM	COURSE	COURSE TITLE	CREDITS
		CODE		
		RUSBCH101	Biomolecules	2
	I	RUSBCH102	Cell Biology	2
		RUSBCHP101	Practicals based on RUSBCH101	1
EVDSo		RUSBCHP102	Practicals based on RUSBCH102	1
FIDOC	11	RUSBCH201	Physiology	2
		RUSBCH202	Basics Of Genetics	2
		RUSBCHP201	Practicals based on RUSBCH201	1
		RUSBCHP202	Practicals based on RUSBCH202	1

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2022-2023

Semester I

Course Code: RUSBCH101

Course Title: Biomolecules

Academic year 2022-23

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

	DESCRIPTION				
CO 1	Understand the classification, structures, biological significance of				
	biomolecules - carbohydrates, proteins & lipids which forms the				
	foundation of Biochemistry				
CO 2	Acquire knowledge in quantitative & qualitative estimation and				
	understanding the role and functions of biomolecules.				
CO 3	Describe the chemistry that governs physical, chemical properties				
	and reactions of carbohydrates, proteins and amino acids & lipids.				
CO 4	Comprehend the classification and structures of several				
	monosaccharides, disaccharides and polysaccharides, and explain				
	their functions.				
CO 5	Elucidate the structures of amino acid, peptide bond formation and				
K	classes of amino acids, identify the four levels of protein structure				
	and summarize the function for a range of proteins.				
CO 6	Categorize lipids, identify structure and functions of fats,				
	phospholipids and cholesterol, and explain the structural differences				
	between saturated, monounsaturated and polyunsaturated fatty				
	acids with the functional implications.				
CO 7	Enhance their ability to learn important reactions taking place in the				
	biotic world to study metabolic pathways which will be utilized in				
	higher classes of this program.				

Course	Unit	Course/ Unit Title	Credits/
Code/		Biomolecules	Lectures
Unit		RUSBCH101	2 Credits
	1	Carbohydrates	15L
	1.1	Definition, Occurrence and functions of	2L
		carbohydrates	
	1.2	Classification (Monosaccharides,	
		Oligosaccharides, Polysaccharides)	
	1.3	Monosaccharides	3L
	1.3.1	Concept of aldoses and ketoses	
	1.3.2	Structures and significance of biologically	
		important monosaccharides: glucose, fructose,	
		galactose, mannose, and ribose.	
	1.4.1	Physical Properties:	2L
		Chirality: Isomerism D & L, Stereoisomerism:	
		Enantiomers and Diastereomers, Epimers and	
		Anomers, Optical Isomers, Mutarotation	
	1.4.2	Chemical reactions:	3L
		Oxidation to acidic sugars (Aldonic, Aldaric and	
		Uronic acids) (with respect to glucose)	
		Reduction to sugar alcohols (In boiling alkali,	
		Enediol formation) (with respect to glucose and	
		fructose)	•
		Osazone formation (with respect to glucose and	
		fructose)	
		Orcinol formation (with respect to ribose)	
	1.5	Disaccharides	2L
		Occurrence and structure of Maltose, Lactose and	
		Sucrose	
		Chemical reaction: Formation of glycosidic bonds	
	1.6	Polysaccharides	3L
		Classification based on structure, occurrence,	
		properties and biological importance	
		Composition: Homopolysaccharides and	
		Heteropolysaccharides with examples	
		Storage: Starch and Glycogen – action of amylase	
		on starch	
		Structural: Cellulose and Chitin	
	2	Amino acids & Proteins	15L
II	2.1	Amino acid	3L
	2.1.1	Structure- D & L forms of all 20 amino acids	

	2.1.2	Detailed classification based on: Polarity,	
		Nutritional classification (Essential & Non-	
		essential)	
	2.2.1	Physical Properties: Zwitter ion, pl of amino acids	3L
		and Amino acids as ampholytes	
	2.2.2	Chemical reactions of amino acids with Ninhydrin,	
		Sanger's reagent, Edman's reagent and Dansyl	
		chloride	
	2.3	Non-standard amino acids	2L
	2.4	Functions of amino acids (in brief)	
	2.5	Comparative overview of D- and L-amino acids	
	2.6	Peptides and Proteins	2L
		ASBC- APS classification on the basis of shape,	
		Function and physical properties & solubilities	
		(Simple, conjugated & derived proteins)	
		Nutritional classification (Complete & incomplete	
		proteins)	
		Properties and colour reactions of proteins	
	2.7	Overview of Protein structure	3L
	2.8	A) Primary structure -Formation and	
		characterization of the peptide bond	(\land)
		B) Secondary structure -Alpha helix and beta	
		sheet	
		C)Tertiary and Quaternary structures- an	
		introduction with one example of each	
	2.9	Protein denaturation	1L
	3	Lipids	15L
Ť	3.1.1	Definition and function of lipids	2L
	3.1.2	Classification (Simple, Complex and Derived lipids)	
	3.2	Fatty Acids and Triacylolycerols	3L
	3.2.1	Classification & Chemistry	
		Saturated fatty acids - classification of C2 to C20	
		(even carbon). Common and IUPAC names	
		Unsaturated fatty acids MUFA, PUFA (2.3.4 double	
- 111		bonds)	
		Omega – 3, 6, 9 fatty acids	
		Triacylolycerol - simple and mixed (names and	
		structure)	
	3.2.2	Chemical Reactions of fats	41
	0.2.2	Saponification, Iodination, Ozonolysis, Auto-	
		oxidation. Action of heat on glycerol and choline	
		Rancidity	
		· · · · · · · · · · · · · · · · · · ·	

	Definition & significance Asid number		
	Dennition & Significance - Acid number,		
	Saponification number, lodine number, Reichert -		
	Meissel number		
3.3	Compound Lipids	4L	
	Functions of glycerophospholipids		
	Phosphosphingolipids (ceramide, sphingomyelin)		
	Glycolipids / Cerebrosides (gluco &		
	galactocerebrosides)		
3.4	Steroids and Lipoproteins	2L	
	Steroids - Cholesterol structure and biochemical		
	significance		
	Lipoproteins – Types (Chylomicrons, VLDL, LDL		
	and HDL) and biochemical significance		
	Practicals – RUSBCHP101	1 Credit	
1	Safety measures in laboratories.		
2	Qualitative tests for carbohydrates		
3	Qualitative test for amino acids, proteins.		
4	Qualitative tests to detect the unknown		
	carbohydrates and proteins from the given solution		
5	Isoelectric precipitation of casein		
6	Qualitative test for lipids		
7	Saponification value of fat		
8	Determination of the acid value of a fat		
9	Estimation of Glycine by Soronsen's method		
10	Determination of the iodine value of a fat		
1			

- 1. Lehninger, Albert L, Biochemistry, Kalyani Publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 6. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 7. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- Textbook of Medical Biochemistry (8th Edition) by MN Chatterjea & Rana Shinde, Jaypee publications

Course Code: RUSBCH102

Course Title: Cell Biology

Academic year 2022-23

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE	DESCRIPTION			
OUTCOME				
CO 1	Understand the structure and basic components of prokaryotic and			
	eukaryotic cells and gain insights into its broad classification and differentiation.			
CO 2	Acquire knowledge about morphology, types and functions of			
	different types of cell organelles – Mitochondria, Chloroplast,			
	Nucleus, Ribosomes, Endoplasmic Reticulum, Golgi Complex,			
	Lysosomes and Peroxisomes			
CO 3	Appraise the role of cytoskeleton and understand its different			
	components, function and distribution.			
CO 4	Illustrate the mechanism of cell to cell interaction and cell division, to			
	explain structural and functional aspects of the cells.			
CO 5	Provide in depth knowledge of cell cycle and its check points also to			
	learn structure and functions of chromosomes and phases of cell			
	cycle & division.			
CO 6	Identify and describe the parts of microscope. To study the			
	distinguishing features, principle components and applications of			
	various types of light and electron microscope.			
CO 7	Develop an analytical insight to understand the principle and			
	methodology of centrifugation, different types & application of			
	centrifuge and rotors.			

Course	Unit	Course/ Unit Title	Credits/
Code/		Cell Biology	Lectures
Unit		RUSBCH102	2 Credits
	1	Cell Organelles	15L
	1.1	Broad classification of cell types: prokaryotic and	1L
		eukaryotic cells and their characteristics.	
	1.2	Cell wall and Cell membrane	3L
	1.3	Cell Organelles	3L
	1.3.1	Nucleus: Structure & Function of the nucleus,	
		nuclear envelope, nuclear pore complex, nuclear	
		matrix and nucleolus	
	1.3.2	Mitochondria & chloroplast: Structure, function,	3L
I		endosymbiont theory, genome	
	1.3.3	Ribosome: Structure & Function	
	1.3.4	Endoplasmic reticulum: RER and SER, Function	3L
	1.3.5	Golgi apparatus: Organization and function	
		Brief overview of cotranslational and post-	
		translational transport of proteins	
	1.3.6	Lysosome: Development of different forms of	3L
		lysosomes, role in cellular digestion	
	1.3.7	Peroxisome: assembly, functions (H ₂ O ₂	
		metabolism, fatty acid oxidation), glyoxysomes	
	2	Cytoskeleton, Cell-cell interaction & Cell cycle	15L
	2.1	Introduction and Importance of Cytoskeleton	3L
	2.2	Types (Microtubules, Microfilaments &	
		Intermediate Filaments)	
	2.2.1	Structure, assembly and function of Microtubules:	
		Axonemal and cytoplasmic microtubules (cilia,	
	0.0.0	flagella, centrioles, basal bodies)	0
	2.2.2	Microfilaments: Actin & Myosin, Cytoplasmic	ZL
II	222	Intermediate Filemente: Anchering cell junctions	
	2.2.3	Motor Protoing Kinosing Dynaing & Myasing	11
	2.3	Coll - Coll Interaction	1L 2l
	2.4	Cell-Cell Interactions and Cell-Matrix Interactions	ZL
	2.4.1	Components of Extracellular Matrix: Collagon and	
	2.2.4	Non-Collagen Components	
	213	Tight Junctions: Cap Junctions: Chamical	21
	2.4.3	synanses and Plasmodesmata	26
	25	Role & Importance of Cell Interaction	
	2.0		

	2.6	Cell Cycle	2L
	2.6.1	Overview of Cell Cycle	
	2.6.2	Phases of Cell Cycle	
	2.6.3	Role of checkpoints	2L
	2.6.4	Regulation of cell cycle - Cyclins & CDKs	
	2.6.5	Cell Division (Mitosis and Meiosis)	1L
	3	Tools of Cell Biology (Microscopy &	15L
		Centrifugation)	
	3.1	Microscopy	3L
	3.1.1	Introduction and basic concept of Magnification,	
		Resolving power, Numerical aperture, Limit of	
		resolution, refractive index and role and RI of oil	
	3.1.2	Parts and functions of Compound microscope	
	3.1.3	Light microscope- Bright Field, Dark field, Phase	4L
		contrast, Fluorescence microscopy	
		(Immunofluorescence and FISH), Confocal	
		Microscopy	
111	3.1.4	Electron Microscopy	
	3.2	Centrifugation	2L
	3.2.1	Principle of centrifugation, basic rules of	
		sedimentation, sedimentation coefficient	
	322	Types and applications of centrifuges – Clinical	31
	0	High speed. Ultra centrifuge - preparative and	UL
h		analytical.	
	323	Centrifuge rotors: vertical fixed angle swinging	31
	0.2.0	bucket	0L
	324	Types of centrifugation and its applications-	
*	0.2.4	Differential Rate zonal Isonycnic	
		Practicals – RUSBCHP102	1 Credit
	1	To study the parts of a microscope	1 Orean
	2	Cytochemical staining of polysaccharides by PAS	
	3	To study different stages of mitosis by temporary	
	Ŭ	preparation in opion root tip	
	4	To study of cell organelles by using electron	
	•	micrographs	
	5	To study isolation of mitochondria by differential	
	Ŭ	centrifugation	
	6	Staining and visualization of mitochondria by Janus	
		Green Stain	
	7	Effect of hypotonic isotonic and hypertonic	
	'	solutions on the cells	
	8	Visualization of nuclear fraction by acetocarmine	
		stain	
	1		

- 1. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P.S. Verma, V.K. Agarwal
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Stanier, Ingraham et al ,General Microbiology 4th & 5th Ed. 1987, Macmillan Education Ltd
- 6. Analytical Biochemistry by David Holme
- 7. Biophysical Chemistry, Avinash Upadhyay
- Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
- 9. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 10. Boyer, Rodney F., Modern experimental biochemistry
- 11. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- 12. Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston : Benjamin Cummings / Pearson, ©2011.
- 13. Bruce albert, Molecular Biology of the cell 6th edition, Taylor & Francis (Garland Science)

Modality of Assessment (SEMESTER I)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mark
		S
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

1				
	Question	Options	Marks	Questions
				Based on
				Dased UI
	Q1. A	Any 2 out of 3	04	
				LINUT I
	Q1. B	Any 2 out of 3	06	UNIT
		,		
	Q2 A	Any 2 out of 3	04	
	GE. A		0.1	
	02 B	Apy 2 out of 3	-06	UNITII
	Q2. D	They 2 but of 0	00	
	03 A	Any 2 out of 3	04	
	Q0. / (UT	
	03 B	Any 2 out of 3	06	UNITII
	Q0. D			
		ΤΟΤΑΙ	60	
		IGIAL	00	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Practical I & II
05
15
20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I & II
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester I

Course	101				02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

RAMNARAIN RUIA AUTONOMOUS COLLEGE, SYLLABUS FOR BIOCHEMISTRY 2022-2023

Semester II

Course Code: RUSBCH201

Course Title: Physiology

Academic year 2022-23

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE	DESCRIPTION
OUTCOME	
CO 1	Enumerate the biological significance and functions of water, acids,
	bases and buffers.
CO 2	Gain knowledge about the principles of pH measurement, acid-
	base, buffers and biological buffers its properties and determination
	of pH using electrodes.
CO 3	Explain difference between weak and strong acids/bases,
	recognize different ways of expressing concentrations of a solution.
CO 4	Develop practical aspects on study of water, acid, bases and
	buffers to understand the standardization of laboratory reagents
	and prepare buffer solutions at a given pH and concentration.
CO 5	Categorize fundamentals and application of physiology to study
	biological systems and regulate life processes.
CO 6	Comprehensively study digestion for absorption of nutrients through
	the digestive system.
CO 7	Summarize the flow of respiratory and excretory system and to
	broadcast its functioning.
CO 8	Holistically understand the different organ systems with respect to
	their biochemical events that co-ordinate working of the organ
	system.

Course	Unit	Course/ Unit Title Credits/	
Code/		Physiology Lectures	
Unit		RUSBCH201	2 Credits
	1	Water and Acids, bases & buffers	15L
	1.1	Water	
	1.1.1	Water and its biological significance, water as a	
		universal solvent.	
	1.1.2	Hydrogen bonding and structure	
	1.1.3	Concepts of mole, molar, molar equivalent and	2L
		normal, Dalton	
	1.1.4	Ionization of water, weak acids and weak bases	
	1.1.5	Numericals based on the above concept	
	1.2	Acid and Bases	4L
	1.2.1	Definitions and Introduction of pH Scale,	
•		Measurements, Indicators, Strong and Weak	
		Electrolytes	
	1.2.2	Titration Curve of glycine	
	1.2.3 Working of pH meter and glass electrode		
	1.3	Buffers	2L
	1.3.1	Mechanism of Buffer Action, Buffering Capacity	
γ	1.3.2	Preparation of Buffer Solutions – Acidic and Basic	4L
		Expression of Hendersen–Hasselbalch equation,	
		Henderson equation of acidic and basic buffer	
		solution	
	1.3.3	Numericals based on the above concept	
	2	Digestion & Absorption	15L
	2.1	Histology and Functions of gastro intestinal tract	5L
		(GIT)	
	2.2	Organs and Glands associated with GIT	
	2.3	Secretions and Juices of GIT (Saliva, Gastric juice,	3L
П		Intestinal juice, pancreatic and Bile juice)	
	2.4	Introduction to digestion	3L
	2.4.1	Mechanism of Digestion and Absorption of	
	0.1.0	carbohydrates, Lipids & Proteins	
	2.4.2	Physiology of Disorders related to digestive system	3L
		- Peptic ulcer, Lactose Intolerance, Cellac disease,	
		Pancreatitis	4.51
111	3		15L
	3.1	Respiration	3L

	3.1.1	Components of Respiratory system and their functions		
3.1.2 Breathing - inspiration and		Breathing - inspiration and expiration		
	3.1.3	Composition of air and partial pressure of gases		
	3.1.4	Physical exchange of gases - Transport of oxygen	4L	
and carbon dioxide in blood 3.1.5 Respiratory disorders – Asthma, pharyngitis,				
		Respiratory disorders – Asthma, pharyngitis,		
		laryngitis, hay fever, pneumonia, occupational lung		
		disease (silicosis & asbestosis), cyanosis,		
		respiratory acidosis and alkalosis		
	3.2	Excretion	3L	
	3.2.1	Components of the Excretory system, Functional anatomy of kidney		
	3.2.2	Ultrastructure of nephron: Malpighian Body &		
		Renal tubule		
	3.2.3	Juxta-Glomerular apparatus, Ultrafiltration, GFR	3L	
(Pressures involved & Regulation) 3.2.4 Mechanism and Regulation of Urine formation 3.2.5 Normal & Abnormal constituents of urine 3.2.6 Excretory disorder: Nephritis				
		Mechanism and Regulation of Urine formation		
		Normal & Abnormal constituents of urine	2L	
		Practicals – RUSBCHP201	1 Credit	
	1	Preparation & standardization of laboratory		
	2	reagents		
	3	Quantitative estimation of normality of FAS		
	4	Demonstration of pH meter		
K	5	Preparation of buffers, phosphate and acetate		
	6	buffers		
	7	Determination of pKa of glycine		
	8	Determination of achromic point of salivary		
	9	amylase		
		Estimation of total and free gastric juice acidity		
	10	Effect of bile on emulsification of fats		
		Biochemical profile of urine (Physical		
		characteristics & Qualitative assay)		
		Titrable acidity using Neutral red or Phenol red		

- 1. Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
- 2. Frelfelder D- Physical Biochemistry
- 3. Skoog Douglas A Principles of Instrumental Analysis Harcourt Brace publishers, London

- 4. Human Physiology Chatterjee.C.C, Medical Allied Agency
- 5. Upadhyaya et al Biophysical Chemistry, Himalaya Publishing Home, New Delhi

- 6. Textbook of Medical Physiology: Gyton and Hall, Elsevier publishers
- 7. Sawhney, S.K. and Singh, Randhir: Introductory practical biochemistry, Narosa Publishing House
- 8. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing House
- 9. Crash Course Respiratory System Hickin Renshaw Williams, 4th Ediiton, Mosby Elsevier
- 10. The Netter Collection of Medical Illustrations Respiratory Syste 2nd Edition Volume 3 David A. Kaminsky, Saunders Elsevier
- 11. Principles of Anatomy and Physiology Gerard J Tortora & Bryan Derrickson, John Wiley & sons publication

Course Code: RUSBCH202

Course Title: Basics of Genetics

Academic year 2022-23

COURSE OUTCOMES:

After successful completion of this course, the students would be able to:

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Describe the structure and function of nucleic acid strengthening		
	the basic information of DNA and RNA, understanding nitrogenous		
	bases, their bond formation & reactions of nucleic acids.		
CO 2	Gain insights about types, structure and properties of nucleic acids		
CO 3	Elaborate on central dogma to overview the process of Replication,		
	Transcription and Translation		
CO 4	Learn basic concepts of genetics and transmission of genetic		
	information.		
CO 5	Explain derivatives from Mendel's model of the inheritance of traits.		
CO 6	Study of Human Pedigree analysis in understanding the inheritance		
	of genes in humans		
CO 7	Critically understand the components of DNA and the process of		
	sequencing structural properties of chromosome.		
CO 8	Recognize normal and abnormal karyotypes, describing the		
	abnormalities in chromosomal number.		

Course	Unit	Course/ Unit Title Credits	
Code/		Basics of Genetics Lecture	
Unit		RUSBCH202 2 Credit	
	1	Nucleic acids	15L
	1.1.1	Introduction to nucleic acids	3L
	1.1.2	Structure - Purine & Pyrimidine bases, ribose,	
		deoxyribose, nucleosides and nucleotides (ATP,	
		CTP, GTP, TTP, UTP)	
	1.2	Formation of phosphodiester bond and shorthand	1L
		representation of polynucleotide strand	
	1.3	RNAs (various types in prokaryotes and	3L
		eukaryotes) mRNA, hnRNA, rRNA, snRNA &	
		snoRNA - general account, tRNA - clover leaf	
1		model, Ribozymes	
•	1.4	DNA	2L
	1.4.1	Physical evidence of DNA helical structure.	
		Chargaff's rules (chemical evidence), Watson-Crick	
		model of DNA & its features	
1.4.2		Physical properties of DNA - Effect of heat on	3L
		physical properties of DNA (Viscosity, buoyant	
n Y		density, UV absorption), Hypochromism,	
		hyperchromism, denaturation of DNA.	
	1.5	Reactions of nucleic acids (with DPA and Orcinol)	1L
	1.6	Central Dogma of Life (Overview: Replication,	2L
		Transcription, Translation & Reverse Transcription)	
	2	Mendelian Inheritance & Chromosomal	15L
	0.4.4	Abnormalities	0
	2.1.1	Concept of alleles, genotype & Phenotype	2L
	2.1.2	Mendel s'experimental design	
	2.2.1	Mononybrid cross- principle of segregation,	3L
	2.2.2	Discharing areas principle using back cross	
п	2.2.2	Dinybrid cross- principle of independent	
11	2.2	Assolution from Mondelian genetice	21
	2.3	Deviation from Mendelian genetics	3L
	2.3.1	Numple anele- ABO blood group, Drosophila eye	
		colour, Relation of multiple affeie with molecular	
	222	Jeneritana pattern of single gans. Wild time cligit	
	2.3.2	Mutant allele. Dominant mutant allele & their affect	2L
		on phenotype	

	2.4	Numericals based on above concepts	2L
	2.5.1	Concept of Genes and Chromosomes	3L
	2.5.2	Chromosomal abnormalities (Down's Syndrome,	
		Klinefelter's Syndrome, Turner's Syndrome, Cri-du-	
		chat syndrome, Philadelphia Chromosome)	
	3	Genome Organization & Human pedigree	15L
		analysis	
	3.1	Prokaryotic Genome: Organization of circular	1L
		chromosome	
	3.2	Eukaryotic chromosomes: Organization of DNA	2L
		into chromosomes (upto Solenoid structure)	
	3.3	DNA supercoiling, Topoismerase, Chromatin	5L
		structure, Euchromatin, Heterochromatin, structure	
		of condensed chromatin, Nucleosomes	
		[Centromere, kinetochrome, telomere], Acetylation	
		& deacetylation of histones, Role of Telomerase	
	3.4	Comparison of chromosomal structure in	1L
		prokaryotes and eukaryotes	
	3.5	Transformation: Definition and transformation in	1L
		S.pneumoniae	
	3.6	Transduction: Definition: Explain general features	1L
		with one example	
	3.7	Conjugation: Mechanism, F+, F- and Hfr strain	1L
A V	3.8	Human Pedigree Analysis	3L
	381	Standard symbols used in pedigree analysis	
	382	Applications of pedigree analysis – Autosomal	
	0.0.2	recessive and dominant traits. X-linked recessive	
		and dominant traits. Y-linked traits	
	383	Problems based on this concept	
	0.0.0	Practicals – PUSBCHP202	1 Crodit
	1	Qualitative test for puelois aside	I Cleuit
	2	Cytochomical staining of PNA by Mothyl Groon	
	2	Byronin	
	2	Domonstration of induction of polyploidy in opion	
	3	bemonstration of induction of polypioldy in onion	
	1	1001S	
	4	Smear technique to demonstrate sex chromatin in	
	F	Drobleme en Mondelien geneties Mone & district	
	5	Problems on Wendelian genetics –Wono & dinybrid	
		Cross, Back cross, Lest cross	
	6	Isolation and spooling of DNA from onion/ moong	
	7	Study of abnormal human karyotype and pedigrees	
		(dry lab)	

- 1. Voet, D. and Voet, J.G. (2004) Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA. Biochemistry by Zubay, Geoffrey L.; Wm. C. Brown publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Peter J. Russel, i-Genetics
- 4. Benamin Lewin, Gene VII, Oxford University Press
- 5. M.W. Strickberger, Genetics
- Biochemical methods by S. Sadashivam & A. Minackam, New Age International publisher.Experiments in Molecular Biology - Biochemical Applications - Zachary F. Burton, Jon M. Kaguni
- Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston : Benjamin Cummings / Pearson, ©2011
- 8. Fundamentals of Cell and Molecular Genetics by Arvind Kumar Misra
- 9. Genetics From Genes to Genomes by Leland Hartwell, Michael L. Goldberg, Janice Fischer, Leroy Hood
- 10. Molecular Biology of the Gene: Watson, Baker, Bell, Gann, Levine, Losick; Pearson Benjamin Cummings & CSHL Press
- 11. Gene cloning & DNA analysis: an introduction; seventh edition; T A Brown; Wiley Blackwell publications

Modality of Assessment (SEMESTER II)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mark
		S
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	
Q1. B	Any 2 out of 3	06	UNIT
Q2. A	Any 2 out of 3	04	
Q2. B	Any 2 out of 3	06	UNITI
Q3. A	Any 2 out of 3	04	
Q3. B	Any 2 out of 3	06	
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

Practical I & II
05
15
20

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical I & II			
Laboratory work	25			
Viva	5			
Total	30			

Overall Examination & Marks Distribution Pattern

Semester II

Course	201			2	02		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100