S. P. Mandali's Ramnarain Ruia Autonomous College

(Affiliated to University of Mumbai)

Syllabus for

Program: FYBSc

Program Code: RUSBCH

(Credit Based Semester and Grading System for academic year 2021–2022)

PROGRAM OUTCOMES

РО	PO Description
	A student completing Bachelor's Degree in SCIENCE program
	will be able to:
PO 1	Recall and explain acquired scientific knowledge in a
	comprehensive manner and apply the skills acquired in their
	chosen discipline. Interpret scientific ideas and relate its
	interconnectedness to various fields in science.
PO 2	Evaluate scientific ideas critically, analyse problems, explore
	options for practical demonstrations, illustrate work plans
	and execute them, organise data and draw inferences.
PO 3	Explore and evaluate digital information and use it for
	knowledge upgradation. Apply relevant information so
	gathered for analysis and communication using appropriate
	digital tools.
PO 4	Ask relevant questions, understand scientific relevance,
	hypothesize a scientific problem, construct and execute a
	project plan and analyse results.
PO 5	Take complex challenges, work responsibly and
	independently, as well as in cohesion with a team for
	completion of a task. Communicate effectively, convincingly
	and in an articulate manner.
PO 6	Apply scientific information with sensitivity to values of
"47h"	different cultural groups. Disseminate scientific knowledge
7007	effectively for upliftment of the society.
PO 7	Follow ethical practices at workplace and be unbiased and
	critical in interpretation of scientific data. Understand the
PO 8	environmental issues and explore sustainable solutions for it. Keep abreast with current scientific developments in the
FU 0	specific discipline and adapt to technological advancements
	for better application of scientific knowledge as a lifelong learner
	icai iici

PROGRAM SPECIFIC OUTCOMES

PSO	Description			
	A student completing Bachelor's Degree in SCIENCE program in the subject of BIOCHEMISTRY will be able to:			
PSO 1	Achieve better understanding of the major thrust areas of the disciplines like Chemistry of Biomolecules & their			
	metabolism, Cell biology (Basics, Membrane biochemistry, Cancer), Enzymology, Genetics, Plant Biochemistry,			
	Pharmacology, Microbiology & Immunology.			
PSO 2	Gain acumen of the fundamental biochemical processes occurring at the molecular and gene level.			
PSO 3	Understand the role of Biochemistry in food, human nutrition and environmental science.			
PSO 4	Get insights into multiple important analytical tools for Biochemical testing and apply contextual knowledge and			
	tools of biochemical research for problems solving.			
PSO 5	Acquire and empower technical knowledge by connecting disciplinary and interdisciplinary aspects of biochemistry.			
PSO 6	Compile and interpret Biological data using Biostatistics and Bioinformatics tools.			
PSO 7	Express ideas persuasively through scientific writing and oral presentation which will help in the development of the leadership qualities.			
PSO 8	Possess scientific temperament by research project-based learning.			
PSO 9	Procure hands-on real time experience in industries.			
PSO 10	Get exposure to the strong theoretical and practical understanding of various dimensions of Biochemistry and take up research-oriented courses in the fields of			
	Biochemistry, Nutrition & Dietetics, Molecular Biology, etc.			

PROGRAM OUTLINE

	1			CREDITS
YEAR	EAR SEM COURSE COURSE TITLE			
	CODE			
		RUSBCH101	Biomolecules	2
	١	RUSBCH102	Cell Biology	2
	I	RUSBCHP101	Practicals based on RUSBCH101	, 1
FYBSc		RUSBCHP102	Practicals based on RUSBCH102	\1
FIBSC		RUSBCH201	Physiology	2
	ш	RUSBCH202	Basics Of Genetics	2
	"	RUSBCHP201	Practicals based on RUSBCH201	1
		RUSBCHP202	Practicals based on RUSBCH202	1
25		ARAIN P	JIANIIIONONIO	

Semester I

Course Code: RUSBCH101

Course Title: Biomolecules

Academic year 2021-22

COURSE OUTCOMES:

	7,0			
COURSE OUTCOME	DESCRIPTION			
CO 1	Understand the classification, structures, biological significance of			
	biomolecules - carbohydrates, proteins & lipids which forms the			
	foundation of Biochemistry			
CO 2	Acquire knowledge in quantitative & qualitative estimation and			
	understanding the role and functions of biomolecules.			
CO 3	Describe the chemistry that governs physical, chemical properties			
	and reactions of carbohydrates, proteins and amino acids & lipids.			
CO 4	Comprehend the classification and structures of several			
	monosaccharides, disaccharides and polysaccharides, and explain			
	their functions.			
CO 5	Elucidate the structures of amino acid, peptide bond formation and			
	classes of amino acids, identify the four levels of protein structure			
	and summarize the function for a range of proteins.			
CO 6	Categorize lipids, identify structure and functions of fats,			
	phospholipids and cholesterol, and explain the structural differences			
<	between saturated, monounsaturated and polyunsaturated fatty			
	acids with the functional implications.			
CO 7	Enhance their ability to learn important reactions taking place in the			
	biotic world to study metabolic pathways which will be utilized in			
	higher classes of this program.			

Course	Unit	Course/ Unit Title	Credits/
Code/		Biomolecules	Lectures
Unit		RUSBCH101	2 Credits
1		Carbohydrates	15L
	1.1	Definition, Occurrence and functions of	2L
		carbohydrates	
	1.2	Classification (Monosaccharides,	
		Oligosaccharides, Polysaccharides)	1,0
	1.3	Monosaccharides	3L
	1.3.1	Concept of aldoses and ketoses	
	1.3.2	Structures and significance of biologically important	
		monosaccharides: glucose, fructose, galactose,	
		mannose, and ribose.	
	1.4.1	Physical Properties:	2L
		Chirality: Isomerism D & L, Stereoisomerism:	
		Enantiomers and Diastereomers, Epimers and	
		Anomers, Optical Isomers, Mutarotation	
	1.4.2	Chemical reactions:	3L
	Oxidation to acidic sugars (Aldonic, Aldaric and Uronic acids) (with respect to glucose) Reduction to sugar alcohols (In boiling alkali,		
_			
I			
	Enediol formation) (with respect to glucose and		
	fructose)		
Osazone formation (with respect to glucose and			
		fructose) Orainal formation (with respect to ribase)	
	1.5	Orcinol formation (with respect to ribose) Disaccharides	2L
	1.5		ZL
	N	Occurrence and structure of Maltose, Lactose and Sucrose	
~ 5	71	Chemical reaction: Formation of glycosidic bonds	
		Polysaccharides	3L
O Dila	1.0	Classification based on structure, occurrence,	02
(Z)		properties and biological importance	
		Composition: Homopolysaccharides and	
		Heteropolysaccharides with examples	
		Storage: Starch and Glycogen – action of amylase	
	on starch		
		Structural: Cellulose and Chitin	
II	2	Amino acids & Proteins	15L
"	2.1	Amino acid	3L

	2.1.1	Structure- D & L forms of all 20 amino acids	
2.1.2		Detailed classification based on: Polarity,	
		Nutritional classification (Essential & Non-	
		essential)	
	2.2.1	Physical Properties: Zwitter ion, pl of amino acids	3L
		and Amino acids as ampholytes	
	2.2.2	Chemical reactions of amino acids with Ninhydrin,	
		Sanger's reagent, Edman's reagent and Dansyl	
		chloride	4.
	2.3	Non-standard amino acids	2L
	2.4	Functions of amino acids (in brief)	
	2.5	Comparative overview of D- and L-amino acids	\
	2.6	Peptides and Proteins	2L
		ASBC- APS classification on the basis of shape,	
		Function and physical properties & solubilities	
		(Simple, conjugated & derived proteins)	
		Nutritional classification (Complete & incomplete	
		proteins)	
		Properties and colour reactions of proteins	
	2.7	Overview of Protein structure	3L
	2.8	A) Primary structure -Formation and	
		characterization of the peptide bond	
		B) Secondary structure -Alpha helix and beta	
		sheet	
		C)Tertiary and Quaternary structures- an	
		introduction with one example of each	
	2.9	Protein denaturation	1L
	3	Lipids	15L
	3.1.1	Definition and function of lipids	2L
	3.1.2	Classification (Simple, Complex and Derived lipids)	
	3.2	Fatty Acids and Triacylglycerols	3L
~	3.2.1	Classification & Chemistry	
		Saturated fatty acids - classification of C2 to C20	
		(even carbon). Common and IUPAC names	
(II)		Unsaturated fatty acids MUFA, PUFA (2,3,4 double	
		bonds)	
		Omega – 3, 6, 9 fatty acids	
		Triacylglycerol - simple and mixed (names and	
		structure)	
	3.2.2	Chemical Reactions of fats	4L
		Saponification, Iodination, Ozonolysis, Auto-	
		oxidation, Action of heat on glycerol and choline,	
		Rancidity	

	Definition & significance - Acid number,	
	Saponification number, Iodine number, Reichert -	
	Meissel number	
3.3	Compound Lipids	4L
	Functions of glycerophospholipids	
	Phosphosphingolipids (ceramide, sphingomyelin)	
	Glycolipids / Cerebrosides (gluco &	
	galactocerebrosides)	
3.4	Steroids and Lipoproteins	2L
	Steroids - Cholesterol structure and biochemical	. (2)
	significance	
	Lipoproteins – Types (Chylomicrons, VLDL, LDL	
	and HDL) and biochemical significance	
	Practicals – RUSBCHP101	1 Credit
1	Safety measures in laboratories.	
2	Qualitative tests for carbohydrates	
3	Qualitative test for amino acids, proteins.	
4	Qualitative tests to detect the unknown	
	carbohydrates and proteins from the given solution	
5	Isoelectric precipitation of casein	
6	Qualitative test for lipids	
7	Saponification value of fat	
8	Determination of the acid value of a fat	
9	Estimation of Glycine by Soronsen's method	
10	Determination of the iodine value of a fat	

- 1. Lehninger, Albert L, Biochemistry, Kalyani Publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert, W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 6. Biochemical methods by S Sadashivam & A Minackam, New Age International publisher.
- 7. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- 8. Textbook of Medical Biochemistry (8th Edition) by MN Chatterjea & Rana Shinde, Jaypee publications

Course Code: RUSBCH102

Course Title: Cell Biology

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION				
OUTCOME					
CO 1	Understand the structure and basic components of prokaryotic and				
	eukaryotic cells and gain insights into its broad classification and				
	differentiation.				
CO 2	Acquire knowledge about morphology, types and functions of				
	different types of cell organelles - Mitochondria, Chloroplast,				
	Nucleus, Ribosomes, Endoplasmic Reticulum, Golgi Complex,				
	Lysosomes and Peroxisomes				
CO 3	Appraise the role of cytoskeleton and understand its different				
	components, function and distribution.				
CO 4	Illustrate the mechanism of cell to cell interaction and cell division, to				
	explain structural and functional aspects of the cells.				
CO 5	Provide in depth knowledge of cell cycle and its check points also to				
	learn structure and functions of chromosomes and phases of cell				
	cycle & division.				
CO 6	Identify and describe the parts of microscope. To study the				
	distinguishing features, principle components and applications of				
	various types of light and electron microscope.				
CO 7	Develop an analytical insight to understand the principle and				
	methodology of centrifugation, different types & application of				
	centrifuge and rotors.				
PANIA					

Course	Unit	Course/ Unit Title	Credits/
Code/		Cell Biology	Lectures
Unit		RUSBCH102	2 Credits
	1	Cell Organelles	15L
	1.1	Broad classification of cell types: prokaryotic and	1L
		eukaryotic cells and their characteristics.	
	1.2	Cell wall and Cell membrane	3L
	1.3	Cell Organelles	3L
	1.3.1	Nucleus: Structure & Function of the nucleus,	
		nuclear envelope, nuclear pore complex, nuclear	
		matrix and nucleolus	
	1.3.2	Mitochondria & chloroplast: Structure, function,	3L
I		endosymbiont theory, genome	
	1.3.3	Ribosome: Structure & Function	
	1.3.4	Endoplasmic reticulum: RER and SER, Function	3L
	1.3.5	Golgi apparatus: Organization and function	
		Brief overview of cotranslational and post-	
		translational transport of proteins	
	1.3.6	Lysosome: Development of different forms of	3L
		lysosomes, role in cellular digestion	
	1.3.7	Peroxisome: assembly, functions (H ₂ O ₂	
		metabolism, fatty acid oxidation), glyoxysomes	
	2	Cytoskeleton, Cell-cell interaction & Cell cycle	15L
	2.1	Introduction and Importance of Cytoskeleton	3L
	2.2	Types (Microtubules, Microfilaments &	
		Intermediate Filaments)	
	2.2.1	Structure, assembly and function of Microtubules:	
	N	Axonemal and cytoplasmic microtubules (cilia,	
-	7L	flagella, centrioles, basal bodies)	
11.0	2.2.2	Microfilaments: Actin & Myosin, Cytoplasmic	2L
		streaming	
67	2.2.3	Intermediate Filaments: Anchoring cell junctions	
	2.3	Motor Proteins – Kinesins, Dyneins & Myosins	1L
	2.4	Cell - Cell Interaction	2L
	2.4.1	Cell-Cell Interactions and Cell-Matrix Interactions	
	2.2.4	Components of Extracellular Matrix: Collagen and	
	0.40	Non-Collagen Components	0.1
	2.4.3	Tight Junctions; Gap Junctions; Chemical	2L
	0.5	synapses and Plasmodesmata	
	2.5	Role & Importance of Cell Interaction	

	2.6	Cell Cycle	2L
	2.6.1	Overview of Cell Cycle	
	2.6.2	Phases of Cell Cycle	
	2.6.3	Role of checkpoints	2L
	2.6.4	Regulation of cell cycle - Cyclins & CDKs	
	2.6.5	Cell Division (Mitosis and Meiosis)	1L
	3	Tools of Cell Biology (Microscopy &	15L
		Centrifugation)	
	3.1	Microscopy	3L
	3.1.1	Introduction and basic concept of Magnification,	, ('^\
		Resolving power, Numerical aperture, Limit of	
		resolution, refractive index and role and RI of oil	
	3.1.2	Parts and functions of Compound microscope	
	3.1.3	Light microscope- Bright Field, Dark field, Phase	4L
		contrast, Fluorescence microscopy	
		(Immunofluorescence and FISH), Confocal	
		Microscopy	
III	3.1.4	Electron Microscopy	
	3.2	Centrifugation	2L
	3.2.1	Principle of centrifugation, basic rules of	
		sedimentation, sedimentation coefficient	
	3.2.2	Types and applications of centrifuges – Clinical,	3L
		High speed, Ultra centrifuge - preparative and	
		analytical.	
	3.2.3	Centrifuge rotors: vertical, fixed angle, swinging	3L
		bucket	
	3.2.4	Types of centrifugation and its applications-	
		Differential, Rate zonal, Isopycnic	
	7	Practicals – RUSBCHP102	1 Credit
	12	To study the parts of a microscope	
	2	Cytochemical staining of polysaccharides by PAS	
7.	3	To study different stages of mitosis by temporary	
		preparation in onion root tip	
ODI	4	To study of cell organelles by using electron	
(L)		micrographs	
	5	To study isolation of mitochondria by differential	
		centrifugation	
	6	Staining and visualization of mitochondria by Janus	
		Green Stain	
	7	Effect of hypotonic, isotonic and hypertonic	
		solutions on the cells	
	8	Visualization of nuclear fraction by acetocarmine	
		stain	

- 1. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology by P.S. Verma, V.K. Agarwal
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Stryer, Lubert; W.H.; Biochemistry; Freeman publishers
- 4. U. Satyanarayan, U. Chakrapani; Biochemistry. Elsevier
- 5. Stanier, Ingraham et al ,General Microbiology 4th & 5th Ed. 1987, Macmillan Education Ltd
- 6. Analytical Biochemistry by David Holme
- 7. Biophysical Chemistry, Avinash Upadhyay
- 8. Keith Wilson & John Walker, Practical Biochemistry, principle and technique Cambridge University, 5th edition
- 9. Plummer, David T.; Introduction to practical biochemistry; Tata Mc. Graw and Hill publishers.
- 10. Boyer, Rodney F., Modern experimental biochemistry
- 11. Sawhney, S.K. and Singh, Randhir; Introductory practical biochemistry; Narosa Publishing House
- 12. Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston : Benjamin Cummings / Pearson, ©2011.
- 13. Bruce albert, Molecular Biology of the cell 6th edition, Taylor & Francis (Garland Science)

Modality of Assessment (SEMESTER I)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Marks
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks

Semester End Theory Examination: (Deviation from the usual modality)
Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on	
			Based on	
Q1. A	Any 2 out of 3	04	LINIT	
Q1. B	Any 2 out of 3	06	UNIT I	
Q2. A	Any 2 out of 3	04	UNIT II	
Q2. B	Any 2 out of 3	06	ONIT II	
Q3. A	Any 2 out of 3	04	UNIT III	
Q3. B	Any 2 out of 3	06	OINII III	
	TOTAL	60		

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

	Particulars	Practical I & II	
	Journal	05	
	Experimental tasks	15	
	Total	20	c×/
Ξxa	amination: 60%- 60 Marks	5	0,
Eı	nd Practical Examination	:	
		5	•
	Particulars	Practical 1 & II	
	l	A 0 F	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical 1 & II
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester I

Course	1	01		102	2		Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100

Semester II

Course Code: RUSBCH201

Course Title: Physiology

Academic year 2021-22

COURSE OUTCOMES:

	<u> </u>
COURSE	DESCRIPTION
OUTCOME	
CO 1	Enumerate the biological significance and functions of water, acids,
	bases and buffers.
CO 2	Gain knowledge about the principles of pH measurement, acid-
	base, buffers and biological buffers its properties and determination
	of pH using electrodes.
CO 3	Explain difference between weak and strong acids/bases,
	recognize different ways of expressing concentrations of a solution.
CO 4	Develop practical aspects on study of water, acid, bases and
	buffers to understand the standardization of laboratory reagents
	and prepare buffer solutions at a given pH and concentration.
CO 5	Categorize fundamentals and application of physiology to study
	biological systems and regulate life processes.
CO 6	Comprehensively study digestion for absorption of nutrients through
	the digestive system.
CO 7	Summarize the flow of respiratory and excretory system and to
	broadcast its functioning.
CO 8	Holistically understand the different organ systems with respect to
	their biochemical events that co-ordinate working of the organ
	system.

Course	ourse Unit Course/ Unit Title		Credits/
Code/		Physiology	Lectures
Unit		RUSBCH201	2 Credits
	1	Water and Acids, bases & buffers	15L
	1.1	Water	
	1.1.1	Water and its biological significance, water as a	/.
		universal solvent.	
	1.1.2	Hydrogen bonding and structure	7.0
	1.1.3	Concepts of mole, molar, molar equivalent and	2L
		normal, Dalton	
	1.1.4	Ionization of water, weak acids and weak bases	
	1.1.5	Numericals based on the above concept	
	1.2	Acid and Bases	4L
ı	1.2.1	Definitions and Introduction of pH Scale,	
		Measurements, Indicators, Strong and Weak	
		Electrolytes	
	1.2.2	Titration Curve of glycine	
	1.2.3	Working of pH meter and glass electrode	1L
	1.3	Buffers	2L
	1.3.1 Mechanism of Buffer Action, Buffering Capacity	41	
	1.3.2	Preparation of Buffer Solutions – Acidic and Basic	4L
		Expression of Hendersen–Hasselbalch equation,	
		Henderson equation of acidic and basic buffer solution	
	1.3.3	Numericals based on the above concept	
	2	Digestion & Absorption	15L
	2.1	Histology and Functions of gastro intestinal tract	5L
	20	(GIT)	JL
	2.2	Organs and Glands associated with GIT	
1/2	2.3	Secretions and Juices of GIT (Saliva, Gastric juice,	3L
		Intestinal juice, pancreatic and Bile juice)	<u> </u>
	2.4	Introduction to digestion	3L
	2.4.1	Mechanism of Digestion and Absorption of	
		carbohydrates, Lipids & Proteins	
	2.4.2	Physiology of Disorders related to digestive system	3L
		- Peptic ulcer, Lactose Intolerance, Celiac disease,	
		Pancreatitis	
III	3	Respiration & Excretion	15L
•••	3.1	Respiration	3L

	3.1.1	Components of Respiratory system and their	
		functions	
	3.1.2	Breathing - inspiration and expiration	
	3.1.3	Composition of air and partial pressure of gases	
	3.1.4	Physical exchange of gases - Transport of oxygen	4L
		and carbon dioxide in blood	
	3.1.5	Respiratory disorders – Asthma, pharyngitis,	
		laryngitis, hay fever, pneumonia, occupational lung	
		disease (silicosis & asbestosis), cyanosis,	
		respiratory acidosis and alkalosis	, ('^\
	3.2	Excretion	3L
	3.2.1	Components of the Excretory system, Functional	\
		anatomy of kidney	
	3.2.2	Ultrastructure of nephron: Malpighian Body &	
		Renal tubule	
	3.2.3	Juxta-Glomerular apparatus, Ultrafiltration, GFR	3L
		(Pressures involved & Regulation)	
	3.2.4	Mechanism and Regulation of Urine formation	
	3.2.5	Normal & Abnormal constituents of urine	2L
	3.2.6	Excretory disorder: Nephritis	
		Practicals – RUSBCHP201	1 Credit
	1	Preparation & standardization of laboratory	
		reagents	
	2	Quantitative estimation of normality of FAS	
	3	Demonstration of pH meter	
	4	Preparation of buffers, phosphate and acetate	
		buffers	
	5	Determination of pKa of glycine	
	6	Determination of achromic point of salivary	
	0	amylase	
	7	Estimation of total and free gastric juice acidity	
-2	8	Effect of bile on emulsification of fats	
	9	Biochemical profile of urine (Physical	
		characteristics & Qualitative assay)	
(h)	10	Titrable acidity using Neutral red or Phenol red	

- 1. Keith Wilson & John Walker, Practical Biochemistry, principle and technique, Cambridge University, 5th edition
- 2. Frelfelder D- Physical Biochemistry
- 3. Skoog Douglas A Principles of Instrumental Analysis Harcourt Brace publishers, London
- 4. Human Physiology Chatterjee. C.C, Medical Allied Agency
- 5. Upadhyaya et al Biophysical Chemistry, Himalaya Publishing Home, New Delhi
- 6. Textbook of Medical Physiology: Gyton and Hall, Elsevier publishers
- 7. Sawhney, S.K. and Singh, Randhir: Introductory practical biochemistry, Narosa **Publishing House**
- 8. Textbook of medical laboratory technology: Dr. Praful Godkar, Bhalani Publishing
- 9. Crash Course Respiratory System Hickin Renshaw Williams, 4th Editon, Mosby Elsevier
- 10. The Netter Collection of Medical Illustrations Respiratory Syste 2nd Edition Volume 3 – David A. Kaminsky, Saunders Elsevier
- artora Mondolo Republica de la companya della companya de la companya de la companya della compa 11. Principles of Anatomy and Physiology Gerard J Tortora & Bryan Derrickson, John

Course Code: RUSBCH202

Course Title: Basics of Genetics

Academic year 2021-22

COURSE OUTCOMES:

COURSE	DESCRIPTION		
OUTCOME			
CO 1	Describe the structure and function of nucleic acid strengthening		
	the basic information of DNA and RNA, understanding nitrogenous		
	bases, their bond formation & reactions of nucleic acids.		
CO 2	Gain insights about types, structure and properties of nucleic acids		
CO 3	Elaborate on central dogma to overview the process of Replication,		
	Transcription and Translation		
CO 4	Learn basic concepts of genetics and transmission of genetic		
	information.		
CO 5	Explain derivatives from Mendel's model of the inheritance of traits.		
CO 6	Study of Human Pedigree analysis in understanding the inheritance		
	of genes in humans		
CO 7	Critically understand the components of DNA and the process of		
	sequencing structural properties of chromosome.		
CO 8	Recognize normal and abnormal karyotypes, describing the		
	abnormalities in chromosomal number.		
CO 8 Recognize normal and abnormal karyotypes, describing the			

Course	Unit	Course/ Unit Title	Credits/
Code/		Basics of Genetics	Lectures
Unit		RUSBCH202	2 Credits
	1	Nucleic acids	15L
	1.1.1	Introduction to nucleic acids	3L
	1.1.2	Structure - Purine & Pyrimidine bases, ribose,	
		deoxyribose, nucleosides and nucleotides (ATP,	C
	4.0	CTP, GTP, TTP, UTP)	7
	1.2	Formation of phosphodiester bond and shorthand representation of polynucleotide strand	1L
	1.3	RNAs (various types in prokaryotes and	3L
		eukaryotes) mRNA, hnRNA, rRNA, snRNA &	
_		snoRNA - general account, tRNA - clover leaf model, Ribozymes	
l	1.4	DNA	2L
	1.4.1	Physical evidence of DNA helical structure.	
		Chargaff's rules (chemical evidence), Watson-Crick	
		model of DNA & its features	
	1.4.2	Physical properties of DNA - Effect of heat on	3L
		physical properties of DNA (Viscosity, buoyant	
		density, UV absorption), Hypochromism,	
		hyperchromism, denaturation of DNA.	
	1.5	Reactions of nucleic acids (with DPA and Orcinol)	1L
	1.6	Central Dogma of Life (Overview: Replication,	2L
		Transcription, Translation & Reverse Transcription)	
	2	Mendelian Inheritance & Chromosomal Abnormalities	15L
	2.1.1	Concept of alleles, genotype & Phenotype	21
	2.1.2	Mendel's experimental design	Lectures 2 Credits 15L 3L 3L 3L 3L 3L 3L 3L
~5	2.2.1	Monohybrid cross- principle of segregation,	
	2.2.1	Confirmation of principle using back cross	3L
ODI	2.2.2	Dihybrid cross- principle of independent	
W .	2.2.2	assortment	
-	2.3	Deviation from Mendelian genetics	31
	2.3.1	Multiple allele- ABO blood group, Drosophila eye	02
		colour, Relation of multiple allele with molecular	
		genetics	
	2.3.2	Inheritance pattern of single gene- Wild type allele,	2L
		Mutant allele, Dominant mutant allele & their effect	
		on phenotype	
<u> </u>	I		1

	2.4	Numericals based on above concepts	2L
	2.5.1	Concept of Genes and Chromosomes	3L
	2.5.2	Chromosomal abnormalities (Down's Syndrome,	
		Klinefelter's Syndrome, Turner's Syndrome, Cri-du-	
		chat syndrome, Philadelphia Chromosome)	
	3	Genome Organization & Human pedigree	15L
		analysis	
	3.1	Prokaryotic Genome: Organization of circular	1L
		chromosome	
	3.2	Eukaryotic chromosomes: Organization of DNA	2L
		into chromosomes (upto Solenoid structure)	
	3.3	DNA supercoiling, Topoismerase, Chromatin	5L
		structure, Euchromatin, Heterochromatin, structure	
		of condensed chromatin, Nucleosomes	
		[Centromere, kinetochrome, telomere], Acetylation	
		& deacetylation of histones, Role of Telomerase	
III	3.4	Comparison of chromosomal structure in	1L
""		prokaryotes and eukaryotes	
	3.5	Transformation: Definition and transformation in	1L
		S.pneumoniae	
	3.6	Transduction: Definition; Explain general features	1L
		with one example	
	3.7	Conjugation: Mechanism, F+, F- and Hfr strain	1L
	3.8	Human Pedigree Analysis	3L
. 3		Standard symbols used in pedigree analysis	
	3.8.2	Applications of pedigree analysis – Autosomal	
		recessive and dominant traits, X-linked recessive	
		and dominant traits, Y-linked traits	
	3.8.3	Problems based on this concept	
	0	Practicals – RUSBCHP202	1 Credit
	1	Qualitative test for nucleic acids	
~~	2	Cytochemical staining of RNA by Methyl Green	
		Pyronin	
ODI	3	Demonstration of induction of polyploidy in onion	
(L)		roots	
	4	Smear technique to demonstrate sex chromatin in	
		buccal epithelial cells	
	5	Problems on Mendelian genetics –Mono & dihybrid	
		cross, Back cross, Test cross	
	6	Isolation and spooling of DNA from onion/ moong	
	7	Study of abnormal human karyotype and pedigrees	
		(dry lab)	

- 1. Voet, D. and Voet, J.G. (2004) Biochemistry, 3rd Edition, John Wiley & Sons, Inc. USA. Biochemistry by Zubay, Geoffrey L.; Wm. C. Brown publishers
- 2. Zubay, Geoffrey L., Biochemistry; Wm. C. Brown publishers
- 3. Peter J. Russel, i-Genetics
- 4. Benamin Lewin, Gene VII, Oxford University Press
- 5. M.W. Strickberger, Genetics
- 6. Biochemical methods by S. Sadashivam & A. Minackam, New Age International publisher. Experiments in Molecular Biology - Biochemical Applications - Zachary F. Burton, Jon M. Kaguni
- 7. Jane B Reece; Neil A Campbell, Campbell biology 9th edition, Boston: Benjamin Cummings / Pearson, ©2011
- 8. Fundamentals of Cell and Molecular Genetics by Arvind Kumar Misra
- 9. Genetics From Genes to Genomes by Leland Hartwell, Michael L. Goldberg, Janice Fischer, Leroy Hood
- 10. Molecular Biology of the Gene: Watson, Baker, Bell, Gann, Levine, Losick; Pearson Benjamin Cummings & CSHL Press
- A .on; seve 11. Gene cloning & DNA analysis: an introduction; seventh edition; T A Brown; Wiley

Modality of Assessment (SEMESTER II)

Theory Examination Pattern:

A) Internal Assessment- 40%- 40 Marks

Sr No	Evaluation type	Mar ks
1	One Assignment/poster presentation/Quiz	20
2	One class Test (multiple choice questions / subjective)	20
	TOTAL	40

B) External Examination- 60%- 60 Marks Semester End Theory Examination: (Deviation from the usual modality) Owing to the pandemic situation prevailing in 2020 and continuing in 2021, the external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra

external examinations (Semester End) may be conducted online as per the instructions/circulars received from the University of Mumbai and Maharashtra State notifications from time to time. The conventional mode of external examination will commence again only after the declaration of normalcy by the Government authorities.

- 1. Duration These examinations shall be of **02 HOURS** duration.
- 2. Theory question paper pattern:

Paper Pattern:

Question	Options	Marks	Questions Based on
Q1. A	Any 2 out of 3	04	LINIT
Q1, B	Any 2 out of 3	06	UNIT I
Q2. A	Any 2 out of 3	04	UNIT
Q2. B	Any 2 out of 3	06	II
Q3. A	Any 2 out of 3	04	UNIT
Q3. B	Any 2 out of 3	06	III
	TOTAL	60	

Practical Examination Pattern:

A) Internal Examination: 40%- 40 Marks

	Particulars	Practical I & II	
	Journal	05	
	Experimental tasks	15	
	Total	20	c.×
Ξxa	amination: 60%- 60 Marks	S	0/,
Er	nd Practical Examination	:	
	Particulars	Practical 1 & II	
	Laboratory work	25	

B) External Examination: 60%- 60 Marks

Semester End Practical Examination:

Particulars	Practical 1 & II
Laboratory work	25
Viva	5
Total	30

Overall Examination & Marks Distribution Pattern

Semester II

Course	101			102			Grand Total
	Internal	External	Total	Internal	External	Total	
Theory	40	60	100	40	60	100	200
Practicals	20	30	50	20	30	50	100